low velocity layer
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Pauline Maria Galea

<p>A shallow aftershock sequence in the Hawkes Bay region of the North Island, New Zealand (May 1990) was recorded with high quality on an L-shaped, 7-station array of 3-component, short-period seismographs at Wellington, such that the seismic waves travelled almost along strike of the subducted Pacific plate in this region. The arrival times at the stations of the Pn wave pulse from a number of aftershocks could be picked sufficiently accurately for a least-squares inversion to be carried out for wavefront speed, c, and incident azimuth, [theta]. The results show a high apparent velocity, 8.7 [plus or minus] 0.2 km/s, and an azimuth which is shifted by 6.0 [plus or minus] 2.5 degrees east of the true epicentre - station azimuth. The azimuthal anomaly, [delta][theta], has been interpreted as due to lateral refraction of Pn off the subducted slab. The effect of different geometries of the slab on the Pn wavefront characteristics (c and [delta][theta]) at Wellington have been explored through both simple geometrical considerations (in the case of a plane or cylindrical slab) as well as through 3-dimensional ray tracing (in the case of irregular curvature of the slab). It has been shown that a plane or cylindrical slab would require P-wave velocities of about 9.0 km/s to exist within it in order to fit both c and [delta][theta], whereas a model of the slab which departs from a regular cylinder and has a small updip component along strike can fit the observations with P-wave velocities of 8.75 km/s in the high velocity medium. This model has been proposed by Ansell and Bannister (1991) after detailed consideration of the shallow seismicity that defines the slab surface in the lower North Island. Information about the nature of the high velocity medium has been obtained by modeling the waveforms through generation of synthetic seismograms by the reflectivity technique of Kennett (1983). The large number of aftershocks within a small source region, and the sampling of much the same wavepath, meant that a sufficient number of seismograms had very similar and characteristic features that could be modelled. The typical seismogram of the data set had a simple Pn wavepulse, followed immediately by a complex. high frequency (up to 15 Hz) phase (here referred to as Phf) and a high amplitude, lower frequency phase that dominated the P-wavetrain (here referred to as P). A velocity profile that contained a layer of 8.75 km/s material at least 4 km thick, underlying "normal" mantle material of P-velocity 8.2 [plus or minus] 0.2 km/s. and whose surface lies approximately 18 km below the slab surface reproduced the observed seismogram features well. The presence of velocity gradients above and below the layer is not excluded. A gradual decrease in velocity below the layer in fact gives a better fit of the Pn pulse shape. By breaking down the synthetic seismogram into simpler versions. using Kennett's wavefield approximation technique, it has been shown that the Pn wave propagates through the high velocity layer, the Phf phase through the overlying layers as a sequence of reflections and refractions, and the P group as a reverberatory phase in a crustal waveguide, with its energy mostly in the form of free surface reflections and S to P conversion. These results have also been confirmed by ray tracing. Waveform modelling has also clearly shown that a low velocity layer (representing subducted sediment) on the top of the subducted slab produces a highly characteristic imprint on the synthetic seismogram, in the form of an energetic, reverberatory, lower frequency signal late in the P-wavetrain. Wavefield approximations show that this is also a crustal waveguide effect, with a strong component of mode conversion at the free surface, but P - S conversion appears to be the dominant mechanism. Seismograms very similar to such synthetic ones have been observed for the Weber aftershocks recorded at stations along the northern East Coast. The presence of such a low velocity layer in the East Coast region is thus implied, consistently with previous proposals. The petrological implications of the high velocity layer in the subducted Pacific plate are discussed. The most likely explanation is that it represents the maximum P velocity of an anisotropic layer within the Pacific upper mantle. It is proposed that the conditions of stress orientation, pressure and temperature at approximately 36 - 50 km depth in this region induces a strong realignment of olivine crystals with their fast direction along strike of the slab, normal to the maximum compressive stress axis. The upper mantle of the segment of the Pacific ocean just east of the Tonga - Kermadec trench and the North Island has been shown in this study to possess P-wave anisotropy, with the P-velocity reaching a maximum of 8.37 km/s in a direction N60 degrees E. This result was obtained by analysing a large set of ISC travel times from earthquakes along the Tonga - Kermadec - New Zealand subduction zone recorded at stations Niue, Rarotonga and the Chatham Islands. It is suggested that an enhancement of this anisotropy, accompanied by some re-orientation, takes place as the upper mantle medium is subjected to the new stress conditions in the initial stages of subduction.</p>


2021 ◽  
Author(s):  
◽  
Pauline Maria Galea

<p>A shallow aftershock sequence in the Hawkes Bay region of the North Island, New Zealand (May 1990) was recorded with high quality on an L-shaped, 7-station array of 3-component, short-period seismographs at Wellington, such that the seismic waves travelled almost along strike of the subducted Pacific plate in this region. The arrival times at the stations of the Pn wave pulse from a number of aftershocks could be picked sufficiently accurately for a least-squares inversion to be carried out for wavefront speed, c, and incident azimuth, [theta]. The results show a high apparent velocity, 8.7 [plus or minus] 0.2 km/s, and an azimuth which is shifted by 6.0 [plus or minus] 2.5 degrees east of the true epicentre - station azimuth. The azimuthal anomaly, [delta][theta], has been interpreted as due to lateral refraction of Pn off the subducted slab. The effect of different geometries of the slab on the Pn wavefront characteristics (c and [delta][theta]) at Wellington have been explored through both simple geometrical considerations (in the case of a plane or cylindrical slab) as well as through 3-dimensional ray tracing (in the case of irregular curvature of the slab). It has been shown that a plane or cylindrical slab would require P-wave velocities of about 9.0 km/s to exist within it in order to fit both c and [delta][theta], whereas a model of the slab which departs from a regular cylinder and has a small updip component along strike can fit the observations with P-wave velocities of 8.75 km/s in the high velocity medium. This model has been proposed by Ansell and Bannister (1991) after detailed consideration of the shallow seismicity that defines the slab surface in the lower North Island. Information about the nature of the high velocity medium has been obtained by modeling the waveforms through generation of synthetic seismograms by the reflectivity technique of Kennett (1983). The large number of aftershocks within a small source region, and the sampling of much the same wavepath, meant that a sufficient number of seismograms had very similar and characteristic features that could be modelled. The typical seismogram of the data set had a simple Pn wavepulse, followed immediately by a complex. high frequency (up to 15 Hz) phase (here referred to as Phf) and a high amplitude, lower frequency phase that dominated the P-wavetrain (here referred to as P). A velocity profile that contained a layer of 8.75 km/s material at least 4 km thick, underlying "normal" mantle material of P-velocity 8.2 [plus or minus] 0.2 km/s. and whose surface lies approximately 18 km below the slab surface reproduced the observed seismogram features well. The presence of velocity gradients above and below the layer is not excluded. A gradual decrease in velocity below the layer in fact gives a better fit of the Pn pulse shape. By breaking down the synthetic seismogram into simpler versions. using Kennett's wavefield approximation technique, it has been shown that the Pn wave propagates through the high velocity layer, the Phf phase through the overlying layers as a sequence of reflections and refractions, and the P group as a reverberatory phase in a crustal waveguide, with its energy mostly in the form of free surface reflections and S to P conversion. These results have also been confirmed by ray tracing. Waveform modelling has also clearly shown that a low velocity layer (representing subducted sediment) on the top of the subducted slab produces a highly characteristic imprint on the synthetic seismogram, in the form of an energetic, reverberatory, lower frequency signal late in the P-wavetrain. Wavefield approximations show that this is also a crustal waveguide effect, with a strong component of mode conversion at the free surface, but P - S conversion appears to be the dominant mechanism. Seismograms very similar to such synthetic ones have been observed for the Weber aftershocks recorded at stations along the northern East Coast. The presence of such a low velocity layer in the East Coast region is thus implied, consistently with previous proposals. The petrological implications of the high velocity layer in the subducted Pacific plate are discussed. The most likely explanation is that it represents the maximum P velocity of an anisotropic layer within the Pacific upper mantle. It is proposed that the conditions of stress orientation, pressure and temperature at approximately 36 - 50 km depth in this region induces a strong realignment of olivine crystals with their fast direction along strike of the slab, normal to the maximum compressive stress axis. The upper mantle of the segment of the Pacific ocean just east of the Tonga - Kermadec trench and the North Island has been shown in this study to possess P-wave anisotropy, with the P-velocity reaching a maximum of 8.37 km/s in a direction N60 degrees E. This result was obtained by analysing a large set of ISC travel times from earthquakes along the Tonga - Kermadec - New Zealand subduction zone recorded at stations Niue, Rarotonga and the Chatham Islands. It is suggested that an enhancement of this anisotropy, accompanied by some re-orientation, takes place as the upper mantle medium is subjected to the new stress conditions in the initial stages of subduction.</p>


2021 ◽  
Vol 57 (6) ◽  
pp. 849-863
Author(s):  
L. P. Vinnik ◽  
G. D. Georgieva ◽  
S. I. Oreshin ◽  
L. I. Makeyeva ◽  
D. N. Dragomirov ◽  
...  

Abstract—Analysis of P- and S-receiver functions for 19 seismic stations on the Balkan Peninsula has been performed. Half of the stations are in Bulgaria. The crustal thickness varies from 28–30 to 50 km. The ratio of longitudinal and shear wave velocities in the upper crust reaches 2.0 in some places. In the southwest of the study area, the 410-km seismic boundary is uplifted by 10 km relative to nominal depth. The elevation may be caused by hydration and/or cooling of the mantle transition zone under the influence of the Hellenic subduction zone. A low S-wave velocity layer related to the 410-km boundary may be located atop this boundary. In the northwestern part of the study area this layer is present in spite of the absence of the 410-km boundary. A similar paradox has been previously noted in central Anatolia. Indications of a low-velocity layer are present at a depth exceeding 410 km. The simultaneous inversion of the receiver functions of the two types (P and S) and the Rayleigh wave phase velocities reveals a large (7–9%) decrease in the S-wave velocity in the upper mantle of southern Bulgaria and northern Greece. The thickness of the low-velocity layer (asthenosphere) is about 50 km. The lithosphere-asthenosphere boundary (LAB) is at depths of 40 to 60 km. In terms of tectonics, this zone is characterized as the South Balkan extension system. To the north of 43° N, the S-wave velocity in the upper mantle is usually at least 4.4 km/s and the LAB is not detected or is detected at a depth of over 80 km. The SKS analysis of azimuthal anisotropy reveals lateral zoning in the upper mantle that is correlated to velocity zoning. Probably, the mechanically weak low-velocity mantle of the South Balkan system is easily deformed, and the azimuth of the fast direction of anisotropy (20°) indicates the direction of extension. At the northern stations, the fast direction (about –30°) may be a reflection of an older process.


2021 ◽  
Author(s):  
Peng Gengxin ◽  
Duan Mengchuan ◽  
Xu Kaichi ◽  
Zhu Yunhong ◽  
Pei Guangping ◽  
...  

2021 ◽  
Vol 40 (8) ◽  
pp. 601-609
Author(s):  
Ivan Javier Sánchez-Galvis ◽  
Jheyston Serrano ◽  
Daniel A. Sierra ◽  
William Agudelo

The accurate simulation of seismic surface waves on complex land areas requires elastic models with realistic near-surface parameters. The SEAM Phase II Foothills model, proposed by the SEG Advanced Modeling (SEAM) Corporation, is one of the most comprehensive efforts undertaken by the geophysics community to understand complex seismic wave propagation in foothills areas. However, while this model includes a rough topography, alluvial sediments, and complex geologic structures, synthetic data from the SEAM consortium do not reproduce the qualitative characteristics of the scattering energy that is generally interpreted as the “ground roll energy cone” on shot records of real data. To simulate the scattering, a near-surface elastic model in mountainous areas ideally must include the following three elements: (1) rough topography and bedrock, (2) low-velocity layer, and (3) small-scale heterogeneities (size approximately Rayleigh wavelength). The SEAM Foothills model only includes element (1) and, to a lesser extent, element (2). We represent a heterogeneous near surface as a random medium with two parameters: the average size of the heterogeneities and fractional fluctuation. A parametric analysis shows the influence of each parameter on the synthetic data and how similar it is compared to real data acquired in a foothills area in Colombia. We perform the analysis in the shot gather panel and dispersion image. Our study shows that it is necessary to include the low-velocity layer and small-scale distributed heterogeneities in the shallow part of the SEAM model to get synthetic data with realistic scattered surface-wave energy.


2021 ◽  
Author(s):  
Daniela Farrugia ◽  
Pauline Galea ◽  
Sebastiano D’Amico

Earthquake ground motion is dependent on various factors, including local ground conditions. Whilst many studies have characterized the effect of having outcropping “soft” geological layers which have the ability to amplify ground motion, there is minimal literature on the effect of having such layers embedded between two harder layers. This situation creates a seismic wave velocity inversion. The Maltese islands (Central Mediterranean) present a good opportunity for the study of velocity inversion as almost half of the islands are characterized by a thick buried layer of clay. The results presented in this chapter are a combination of studies which have been conducted on the Maltese islands, using non-invasive geophysical prospecting techniques in areas characterized by a thick buried low-velocity layer, to characterize the response of earthquake ground shaking in such geological situations.


2021 ◽  
Vol 554 ◽  
pp. 116642
Author(s):  
Guangjie Han ◽  
Juan Li ◽  
Guangrui Guo ◽  
Walter D. Mooney ◽  
Shun-ichiro Karato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document