A least‐squares minimization approach to depth determination of a thick vertical fault from gravity data

1983 ◽  
Author(s):  
O. P. Gupta
2019 ◽  
Vol 49 (3) ◽  
pp. 229-247
Author(s):  
El-Sayed Abdelrahman ◽  
Mohamed Gobashy

Abstract We present a least-squares minimization approach to estimate simultaneously the depth to and thickness of a buried 2D thick, vertically faulted slab from gravity data using the sample spacing – curves method or simply s-curves method. The method also provides an estimate for the horizontal location of the fault and a least-squares estimate for the density contrast of the slab relative to the host. The method involves using a 2D thick vertical fault model convolved with the same finite difference second horizontal gradient filter as applied to the gravity data. The synthetic examples (noise-free and noise affected) are presented to illustrate our method. The test on the real data (Central Valley of Chile) and the obtained results were consistent with the available independent observations and the broader geological aspects of this region.


Geophysics ◽  
1983 ◽  
Vol 48 (3) ◽  
pp. 357-360 ◽  
Author(s):  
O. P. Gupta

The present paper deals with a numerical approach to determine the depth of a buried structure from the residual anomaly. The problem of depth determination has been transformed into the problem of finding a solution of a nonlinear equation of the form [Formula: see text]. Formulas have been derived for a sphere, vertical and horizontal cylinders, and for a vertical fault (thin plate approximation). The procedure is applied to synthetic data with and without random errors. Finally, a field example is presented in which the depth to a fault is estimated at 3.8 km and verified from drilling results.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 376-377 ◽  
Author(s):  
El‐Sayed M. Abdelrahman

In the article by Gupta, the problem of depth determination of a buried structure from the residual gravity anomaly has been transformed into a problem of finding the solution of a nonlinear equation of the form f(z) = 0. Gupta begins his formulation of the problem with equation (1) from Mettleton (1942) Eq. (1) [Formula: see text]


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 589-590 ◽  
Author(s):  
El‐Sayed M. Abdelrahman ◽  
Sharafeldin M. Sharafeldin

The gravity anomaly expression produced by most geologic structures can be represented by a continuous function of both shape (shape‐factor) and depth‐related variables with an amplitude coefficient related to mass (Abdelrahman and El‐Araby, 1993). Few methods have been developed to determine the shape of the buried geologic structure from residual gravity anomaly profiles. These methods include a Walsh transform approach (Shaw and Agarwal, 1990) and the employment of a correlation factor between successive least‐squares residuals (Abdelrahman and El‐Araby 1993). In the present note, a least‐squares minimization approach to shape‐factor determination from a residual gravity anomaly profile is presented. The problem of the shape‐factor determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(q) = 0.


2003 ◽  
Vol 160 (7) ◽  
pp. 1259-1271 ◽  
Author(s):  
E. M. Abdelrahman ◽  
H. M. El-Arby ◽  
T. M. El-Arby ◽  
K. S. Essa

Geophysics ◽  
1982 ◽  
Vol 47 (10) ◽  
pp. 1460-1460
Author(s):  
B. A. Sissons

Although the Tokaanu experiment does contradict the proposal that the gravitational constant G increases with scale, the result is not significant. The standard error in the least‐squares adjustment is at least 1 percent, which exceeds the predicted variation in G. The uncertainty in mean density is nearer 5 percent. Gravity data with sufficient precision to test for a scale effect in G are obtainable; the main problem appears to be the uncertainty in density determinations. Stacey et al (1981) made a least‐squares determination of G using gravity and density measurements from a mine. However, the pattern of residuals obtained indicated the presence of anomalous masses not adequately accounted for by their density averaging. The method I have used which models the spatial variation in density offers the possibility of obtaining a least‐squares fit for G with a satisfactory residual distribution. However, the problem of the effect on bulk density of joints and voids not sampled in hand specimens remains.


2007 ◽  
Vol 55 (3) ◽  
pp. 433-446 ◽  
Author(s):  
El-Sayed M. Abdelrahman ◽  
Eid. R. Abo-Ezz ◽  
Khalid S. Essa ◽  
T.M. El-Araby ◽  
Khaled S. Soliman

Geophysics ◽  
1993 ◽  
Vol 58 (12) ◽  
pp. 1779-1784 ◽  
Author(s):  
El‐Sayed M. Abdelrahman ◽  
Tarek M. El‐Araby

We have developed a least‐squares minimization method to estimate the depth of a buried structure from moving average residual gravity anomalies. The method involves fitting simple models convolved with the same moving average filter as applied to the observed gravity data. As a result, our method can be applied not only to residuals but also to the Bouguer gravity data of a short profile length. The method is applied to synthetic data with and without random errors. The validity of the method is tested in detail on two field examples from the United States and Senegal.


Sign in / Sign up

Export Citation Format

Share Document