vertical fault
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 3)

Ground Water ◽  
2021 ◽  
Author(s):  
James L. McCallum ◽  
Saskia L. Noorduijn ◽  
Craig T. Simmons

2021 ◽  
Vol 9 ◽  
Author(s):  
Qingri Liu ◽  
Huiping Zhang ◽  
Youli Li ◽  
Feipeng Huang ◽  
Xudong Zhao ◽  
...  

The height of a thrust-fault scarp on a fluvial terrace would be modified due to erosion and deposition, and these surface processes can also influence the dating of terraces. Under such circumstances, the vertical slip rate of a fault can be misestimated due to the inaccurate displacement and/or abandonment age of the terrace. In this contribution, considering the effect of erosion and deposition on fault scarps, we re-constrained the vertical slip rate of the west end of the Minle–Damaying Fault (MDF), one of the thrusts in the north margin of the Qilian Shan that marks the northeastern edge of the Tibetan Plateau. In addition, we tried to explore a more reliable method for obtaining the vertical fault displacement and the abandonment age of terraces with AMS 14C dating. The heights of the surface scarps and the displacements of the fluvial gravel layers exposed on the Yudai River terraces were precisely measured with the Structure from Motion (SfM) photogrammetry and the real-time kinematic (RTK) GPS. The Monte Carlo simulation method was used to estimate the uncertainties of fault displacements and vertical slip rates. Based on comparative analysis, the dating sample from the fluvial sand layer underlying the thickest loess in the footwall was suggested to best represent the abandonment age of the terrace, and the fluvial gravel layer could better preserve the original vertical fault displacement compared with the surface layer. Using the most reliable ages and vertical offsets, the vertical slip rate of the MDF was estimated to be 0.25–0.28 mm/a since 42.3 ± 0.5 ka (T10) and 0.14–0.24 mm/a since 16.1 ± 0.2 ka (T7). The difference between the wrong vertical slip rate and the right one can even reach an order of magnitude. We also suggest that if the built measuring profile is long enough, the uncertainties in the height of a surface scarp would be better constrained and the result can also be taken as the vertical fault displacement. Furthermore, the consistency of chronology with stratigraphic sequence or with terrace sequence are also key to constraining the abandonment ages of terraces. The fault activity at the study site is weaker than that in the middle and east segments of the MDF, which is likely due to its end position.


Geophysics ◽  
2021 ◽  
pp. 1-39
Author(s):  
Nepomuk Boitz ◽  
Serge A. Shapiro

Half-moon events are a special type of microseismic source mechanism that is found at various hydraulic fracturing sites, but hardly observed in natural seismicity. This event type can be either explained by a vertical slip on a nearly vertical fault plane or by horizontal slip on a nearly horizontal fault plane. For this, special stress conditions are required, for instance nearly equal horizontal and vertical compressional stresses and significant shear stresses. Such conditions are created during hydraulic stimulation as shown by our numerical simulations. By applying fracture pressure to the surface of the hydraulic fracture, the stress field in the vicinity of the hydraulic fracture can locally rotate and horizontal or vertical faults become optimally oriented. We show that such rotations can occur in locations, where the elastic properties of rocks change (i.e., the fracture crosses a layer interface) or at the tips of the hydraulic fracture.Depending on the stress regime, our model explains half-moon events generated by slip on nearly horizontal fault planes in strike-slip environments and by slip on nearly vertical fault planes in normal faulting tectonics. Moreover, our models explain several common characteristics observed in multiple case studies. This includes the observation of high portion of half-moon events and opposed shear senses in different depths and on opposite sides of the fracture.


2021 ◽  
Vol 92 (3) ◽  
pp. 1876-1890 ◽  
Author(s):  
Christine J. Ruhl ◽  
Emily A. Morton ◽  
Jayne M. Bormann ◽  
Rachel Hatch-Ibarra ◽  
Gene Ichinose ◽  
...  

Abstract On 15 May 2020 an Mww 6.5 earthquake occurred beneath the Monte Cristo Range in the Mina Deflection region of western Nevada. Rapid deployment of eight temporary seismic stations enabled detailed analysis of its productive and slowly decaying aftershock sequence (p=0.8), which included ∼18,000 autodetected events in 3.5 months. Double-difference, waveform-based relative relocation of 16,714 earthquakes reveals a complex network of faults, many of which cross the inferred 35-km-long east–northeast-striking, left-lateral mainshock rupture. Seismicity aligns with left-lateral, right-lateral, and normal mechanism moment tensors of 128 of the largest earthquakes. The mainshock occurred near the middle of the aftershock zone at the intersection of two distinct zones of seismicity. In the western section, numerous subparallel, shallow, north-northeast-striking faults form a broad flower-structure-like fault mesh that coalesces at depth into a near-vertical, left-lateral fault. We infer the near-vertical fault to be a region of significant slip in the mainshock and an eastward extension of the left-lateral Candelaria fault. Near the mainshock hypocenter, seismicity occurs on a northeast-striking, west-dipping structure that extends north from the eastern Columbus Salt Marsh normal fault. Together, these two intersecting structures bound the Columbus Salt Marsh tectonic basin. East of this intersection and the mainshock hypocenter, seismicity occurs in a narrow, near-vertical, east-northeast-striking fault zone through to its eastern terminus. At the eastern end, the aftershock zone broadens and extends northwest toward the southern extension of the northwest-striking, right-lateral Petrified Springs fault system. The eastern section hosts significantly fewer aftershocks than the western section, but has more moment release. We infer that shallow aftershocks throughout the system highlight fault-fracture meshes that connect mapped fault systems at depth. Comparing earthquake data with surface ruptures and a simple geodetic fault model sheds light on the complexity of this recent M 6.5 Walker Lane earthquake.


Author(s):  
A.A. Petrova ◽  
◽  
O.V. Latysheva ◽  
Yu.A. Kopytenko ◽  
◽  
...  

The results of the study of the deep structure of the lithosphere in Eastern Siberia are presented. Based on data on the thickness of the permafrost ice horizon, gravity anomalies, geomagnetic field anomalies and seismological data, a model of the structure of the lithosphere of regions with a stable ice horizon thickness was obtained. It is shown that areas with large values of the thickness of the ice horizon gravitate towards the powerful roots of the lithosphere with increased density and magnetization. It has been suggested that the stability of permafrost horizons is provided by cold blocks of the lithosphere roots, which overlap the heat of the mantle. To search for endogenous causes of climatic risks in areas with accelerated degradation of permafrost, deep sections of the earth's crust were built. Analysis of data on the thickness of the ice horizon together with deep sections showed that fluid channels of deep vertical fault zones play a decisive role in the permafrost destruction process. Accelerated degradation of permafrost is localized near the outcrops of fluid-magmatic channels, where specific melting zones have been identified in the form of through taliks caused by endogenous factors of directional action under the influence of fluid flows rising from a depth of ~50–100 km. The studies carried out make it possible to understand the possible causes of the destruction of infrastructure in the permafrost zone and to predict the location of the most probable areas of accelerated degradation.


2021 ◽  
Author(s):  
Irène Aubert ◽  
Juliette Lamarche ◽  
Philippe Leonide

<p>Understanding the impact of fault zones on reservoir trap properties is a major challenge for a variety of geological ressources applications. Fault zones in cohesive rocks are complex structures, composed of 3 components: rock matrix, damage zone fractures and fault core rock. Despite the diversity of existing methods to estimate fault zone permeability/drain properties, up to date none of them integrate simultaneously the 3 components of fracture, fault core and matrix permeability, neither their evolution with time. We present a ternary plot that characterizes the fault zones permeability as well as their drainage properties. The ternary plot aims at (i) characterizing the fault zone permeability between the three vertices of matrix, fractures and fault core permeability ; and at (ii) defining the drain properties among 4 possible hydraulic system: (I) good horizontal and vertical, fault-perpendicular and -parallel; (II) moderate parallel fluid pathway; (III) good parallel fault-core and (IV) good parallel fractures. The ternary plot method is valid for 3 and 2 components fault zones. The application to the Castellas Fault case study show the simplicity and efficiency of the plot for studying underground and/or fossil, simple or polyphase faults in reservoirs with complete or limited permeability data.</p>


2021 ◽  
Author(s):  
Athanassios Ganas ◽  
Sotiris Valkaniotis ◽  
Panagiotis Elias ◽  
Varvara Tsironi ◽  
Ilektra Karasante ◽  
...  

<p>On December 29, 2020, at 11:19 UTC, a strong (M6.4), shallow earthquake occurred in the central region of Croatia. The epicentre was located near the town of Petrinja, about 40 km to the south of the capital, Zagreb. Here we present a preliminary analysis of the geodetic data (differential InSAR & GNSS) and preliminary estimates of the slip that occurred on the fault during the earthquake and subsequent aftershocks. We picked InSAR data to invert for the seismic fault assuming linear rheology and Okada-type dislocation (rectangular) source with non-uniform slip. The interferograms show an asymmetric, four‐lobed pattern, centered on a NW‐SE oriented discontinuity that is in agreement with the right-lateral plane of the moment tensor solutions for the mainshock. We found that the Petrijna earthquake ruptured a segment of a strike-slip fault zone that is shorter (8 km) than average and with larger slip (~ 3 m). All parameters of the seismic fault are well constrained by InSAR modeling due to the full azimuthal coverage with both ascending and descending data of good quality. The fit to the fringes is better with a steep dip angle (76°) than with a purely vertical fault. The upper edge of the modeled fault is at a depth of ~1 km, this means that the slip drop from 3 to 0 m in the uppermost kilometer and our geodetic analysis cannot assess whether the fault reached the surface in some sections of the fault, however should this be the case, we expect ruptures at the surface in the range of 0.1 to 0 m for consistency with our model and the structure of the fringes pattern. In particular, preliminary modelling results with distributed fault-slip show that the slip reached a peak of more than 2.5 m at a depth of about 2 km. We also found that, differently from what reported in the European database of seismogenic sources (EDSF), the seismic fault dips westward instead of eastward. Additionally, the 2020 rupture and the InSAR mapped trace do not match the EDSF composite seismogenic fault surface trace. Kinematic analysis of GNSS waveforms at station BJEL (about 70-km east of the epicentre) revealed that horizontal ground motion reached 7-cm (peak-to-peak). The InSAR data revealed a 7 km of right-lateral afterslip on the NW-edge of the rupture, and 5 km to the south of the main fault rupture. In particular, the afterslip data on the NW edge of the rupture document the curved shape of the post-seismic deformation, that highlights the non-planarity of faults in nature and possibly indicating the existence of a ramp structure connecting to the neighboring segment towards north.</p>


2021 ◽  
Author(s):  
Riccardo Minetto ◽  
Agnès Hemlstetter ◽  
Philippe Guéguen ◽  
Mickaël Langlais

<p>We analyse the spatio-temporal variations of the seismicity recorded during the Maurienne swarm. The Maurienne swarm occurred between 2017 and 2018 in the French Alps in the central part of the external crystalline massif of Belledonne. This massif extends for more than 120km in N30 direction, it is bounded to the west by the wide topographic depression of the Isère valley and the Combe de Savoie, and it is crosscut by the Maurienne valley.  The location and the 3D shape of the seismic swarm are consistent with an outcroping N80 vertical fault zone. The seismic activity is interpreted as a result of the reactivation of this inherited vertical fault system. The largest event had a magnitude of 3.5.</p><p><br>We used a catalog of 58000 events that were detected using template-matching and relocated with a double-difference method.  <br>We show that the swarm is characterised by short-term (days) and long-term (months) migrations that may be related to the presence of fluids. <br>We also observe that the b-value decreases with depth and we discuss how this variation may due to shallow fault systems whose geometry differs from the one of the main fault system. <br>Part of the events occurred when only one station was active. This study shows that, by grouping earthquakes into groups of similar events (clusters), it is possible to study spatio-temporal variations in such conditions.</p>


Author(s):  
Nicolas Harrichhausen ◽  
Kristin D. Morell ◽  
Christine Regalla ◽  
Scott E. K. Bennett ◽  
Lucinda J. Leonard ◽  
...  

ABSTRACT New paleoseismic trenching indicates late Quaternary oblique right-lateral slip on the Leech River fault, southern Vancouver Island, Canada, and constrains permanent forearc deformation in northern Cascadia. A south-to-north reduction in northward Global Navigation Satellite System velocities and seismicity across the Olympic Mountains, Strait of Juan de Fuca (JDF), and the southern Strait of Georgia, has been used as evidence for permanent north–south crustal shortening via thrust faulting between a northward migrating southern forearc and rigid northern backstop in southwestern Canada. However, previous paleoseismic studies indicating late Quaternary oblique right-lateral slip on west-northwest-striking forearc faults north of the Olympic Mountains and in the southern Strait of Georgia are more consistent with forearc deformation models that invoke oroclinal bending and(or) westward extrusion of the Olympic Mountains. To help evaluate strain further north across the Strait of JDF, we present the results from two new paleoseismic trenches excavated across the Leech River fault. In the easternmost Good Hope trench, we document a vertical fault zone and a broad anticline deforming glacial till. Comparison of till clast orientations in faulted and undeformed glacial till shows evidence for postdeposition faulted till clast rotation, indicating strike-slip shear. The orientation of opening mode fissuring during surface rupture is consistent with right-lateral slip and the published regional SHmax directions. Vertical separation and the formation of scarp-derived colluvium along one fault also indicate a dip-slip component. Radiocarbon charcoal dating within offset glacial till and scarp-derived colluvium suggest a single surface rupturing earthquake at 9.4±3.4  ka. The oblique right-lateral slip sense inferred in the Good Hope trench is consistent with slip kinematics observed on other regional west-northwest-striking faults and indicates that these structures do not accommodate significant north–south shortening via thrust faulting.


Sign in / Sign up

Export Citation Format

Share Document