residual gravity anomaly
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
I. N. Ognev ◽  
◽  
E. V. Utemov ◽  
D. K. Nurgaliev ◽  
◽  
...  

In the last two decades in conjunction with the development of satellite gravimetry, the techniques of regional-scale inverse and forward gravity modeling started to be more actively incorporated in the construction of crustal and lithospheric scale models. Such regional models are usually built as a set of layers and bodies with constant densities. This approach often leads to a certain difference between the initially used measured gravity field and a gravity field that is produced by the model. One of the examples of this kind of models is a recent lithospheric model of the Volgo-Uralian subcraton. In the current study, we are applying the method of «native» wavelet transform to the residual gravity anomaly for defining the possible lateral density variations within the lithospheric layers of Volgo-Uralia. Keywords: wavelet transform; gravity field inversion; forward gravity modeling; Volgo-Uralian subcraton; satellite gravimetry.


2021 ◽  
Author(s):  
◽  
Stephen Jenkins

<p>The second phase of drilling into the Alpine Fault (DFDP-2), was completed in the Whataroa River valley, a former glacial valley located in central Westland, South Island, New Zealand. The site is located next to a steep hillside on the hanging-wall, ~1 km southeast of the mapped surface trace of the Alpine Fault. Projection of the hillside suggests a sediment thickness of 100 ± 40 m at the drill site; however, the sediment thickness was approximately double pre-drill estimates. Additionally, the surface expression and shallow geometry of the Alpine Fault in the Whataroa River valley, is not well-defined due to post-glacial burial of the fault zone. This thesis describes a gravity study designed to better constrain sub-surface structure beneath the DFDP-2 drill site and across the Alpine Fault.  During this study, 466 new high-precision gravity observations were collected (standard error = 0.015 mGal) and amalgamated with 134 existing gravity stations, yielding comprehensive coverage of gravity data across the study area. A high density of observations was achieved within pre-determined zones, in addition to regional measurements so that residual gravity anomaly maps could be produced. The maps reveal: a negative residual gravity anomaly interpreted as a dextrally-offset glacial channel at least 350-450 m deep; steep localised gravity gradients near the Alpine Fault and DFDP-2 drill site that are interpreted as faulted and/or eroded boundaries; and a negative gravity anomaly adjacent to the DFDP-2 drill site that is interpreted as the deepest point of an over-deepened glacial lake.  Gravity models were used to estimate the bedrock-sediment interface geometry near the DFDP-2 drill site and Alpine Fault. Structural inversion of the density boundary next to the drill site suggests either a moderately-dipping reverse fault or sub-vertical erosional wall exists beneath the hillside. Additional constraints on physical properties from direct density measurements or seismic velocity determinations and direct constraints on sediment thickness and layer geometry from seismic surveys will in future allow this new high-precision gravity dataset to be modelled more effectively.</p>


2021 ◽  
Author(s):  
◽  
Stephen Jenkins

<p>The second phase of drilling into the Alpine Fault (DFDP-2), was completed in the Whataroa River valley, a former glacial valley located in central Westland, South Island, New Zealand. The site is located next to a steep hillside on the hanging-wall, ~1 km southeast of the mapped surface trace of the Alpine Fault. Projection of the hillside suggests a sediment thickness of 100 ± 40 m at the drill site; however, the sediment thickness was approximately double pre-drill estimates. Additionally, the surface expression and shallow geometry of the Alpine Fault in the Whataroa River valley, is not well-defined due to post-glacial burial of the fault zone. This thesis describes a gravity study designed to better constrain sub-surface structure beneath the DFDP-2 drill site and across the Alpine Fault.  During this study, 466 new high-precision gravity observations were collected (standard error = 0.015 mGal) and amalgamated with 134 existing gravity stations, yielding comprehensive coverage of gravity data across the study area. A high density of observations was achieved within pre-determined zones, in addition to regional measurements so that residual gravity anomaly maps could be produced. The maps reveal: a negative residual gravity anomaly interpreted as a dextrally-offset glacial channel at least 350-450 m deep; steep localised gravity gradients near the Alpine Fault and DFDP-2 drill site that are interpreted as faulted and/or eroded boundaries; and a negative gravity anomaly adjacent to the DFDP-2 drill site that is interpreted as the deepest point of an over-deepened glacial lake.  Gravity models were used to estimate the bedrock-sediment interface geometry near the DFDP-2 drill site and Alpine Fault. Structural inversion of the density boundary next to the drill site suggests either a moderately-dipping reverse fault or sub-vertical erosional wall exists beneath the hillside. Additional constraints on physical properties from direct density measurements or seismic velocity determinations and direct constraints on sediment thickness and layer geometry from seismic surveys will in future allow this new high-precision gravity dataset to be modelled more effectively.</p>


2021 ◽  
Vol 11 (20) ◽  
pp. 9462
Author(s):  
José Maringue ◽  
Esteban Sáez ◽  
Gonzalo Yañez

The study of site amplification effects is crucial to assess earthquake hazards that can produce great damage in urban structures. In this context, the gravity and the ambient noise horizontal-to-vertical spectral ratio (H/V) are two of the most used geophysical methods to study the properties of the subsoil, which are essential to estimate seismic amplification. Even though these methods have been used complementarily, a correlation between them has not been thoroughly studied. Understanding this correlation and how it depends on geology could be important to use one method as an estimator of the other and to make a distinction between the seismic and gravimetric basement. In this research, a comparison between the residual gravity anomaly and the H/V predominant period is performed using a long dataset from different projects on sedimentary basins in a group of the most important cities in Chile. To simplify the geological information, a seismic classification is used for soils, which considers the Vs30 and the predominant period of vibration (T0). The results of this comparison show a direct correlation between both parameters, the higher the negative residual gravity anomaly the higher the H/V predominant period. This correlation improves when only soft soils are considered, increasing the R2 value in more than a 50% in all the individual cities with respect to the overall correlation. When all the cities are considered, the R2 value for soft soils increases up to 0.87. These results suggest that the ideal geological background for this correlation is when a soft soil layer overlies a homogeneous bedrock. Heterogeneities in the bedrock and in the soil column add dispersion to the correlation. Additionally, the comparison between the depth to basement inferred by both methods show differences of less than 15% in soft sites; in denser sites, the difference increases up to 30% and the definition of a clear H/V peak is more difficult. In general, the gravimetric basement is deeper than the seismic one. However, gravimetric depths to basement can be under/over-estimated in zones with a heterogeneous soil column.


2021 ◽  
Vol 54 (2C) ◽  
pp. 29-38
Author(s):  
Wadhah Mahmood Shakir AL-Khafaji

This research deals with the processing and analyzing of magnetic and gravitational data for an area covering the region of Habbanieyah - Razzaza Lakes and its adjacent areas. The study includes data processing and mapping of the total gravity and magnetic anomalies for only the concerned region, then separating the residual anomalies by adopting the polynomial regression graphical method. The residual gravity anomaly reflects the variations of rock densities within the sedimentary cover. The horizontal gradient filter has been applied to the residual gravity anomaly in order to conduct the locations of fault planes within the sedimentary cover where sudden variations of gravity field take place. The quantitative interpretation for both gravity and magnetic anomalies yielded a preliminary determination for the depth to the center of major faults within the sedimentary cover. By constructing a gravity model along a profile which directed NE-SW and passing through the middle part of the study region, depth to the center of the effective faults found. This depth variation is due to the effect of tectonic activity which produced a set of faults, such faults caused the upward and downward structural motions and were responsible for positioning the deep high density causative slabs of bedrock. The residual magnetic field quantitative interpretation along two profiles crosses over anomalies at the NE and SW parts of the region yielded the depth to the top of magnetized basement rocks. The difference in depth of the basement rocks and the shifted anomaly locations reflects the effect of tectonic activity which may relate to a strike slip faulting in the higher depths.


Author(s):  
Maulana Rizki Aditama ◽  
Huzaely Latief Sunan ◽  
FX Anjar Tri Laksono ◽  
Gumilar Ramadhan ◽  
Sachrul Iswahyudi ◽  
...  

The thickness of the liquefable layer can be the factor inducing liquefaction hazard, apart from seismicity. Several studies have been conducted to predict the possibility of the liquefable layer based on the filed sampling. However, a detailed investigation of the subsurface interpretation has not been defined, in particular the thickness estimation of the liquefable layer. This study is carried out in south Cilacap area where potential liquefaction is exists due to the earthquake history data and near surface condition. The aim of this study is to investigate the physical properties and thickness distribution using GGMplus gravity data and resistivity data. This research is conducted by spectrum analysis of gravity model and 2D resistivity model . This study’s main results is by performing the residual gravity anomaly with the associated SRTM/DEM data to define the subsurface physical distribution and structural orientation of the area. Residual gravity anomaly is also separated through the low pass filter in order to have robust interpretation. The residual anomaly indicates that the area has identical structural pattern with geological and SRTM map. The results show a pattern of high gravity index in the northeast area of ​​the study having range of 70 – 115 MGal gravity index, associated with the volcanic breccia, and a low gravity profile with less than 65 in the southwest, associated with the alluvial and water table dominated distribution. The thickness of Alluvial is determined by resistivity model with H1 at a range of 3 meters and H2 at a range of 4 m. This research is included in the potential liquefaction category with the potential for a large earthquake.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoko Nakata ◽  
Takane Hori ◽  
Seiichi Miura ◽  
Ryota Hino

AbstractThere are significant differences between the middle and southern segments of the Japan Trench in terms of the seismic and aseismic slips on the plate interface and seismic velocity structures. Although the large coseismic slip of the 2011 Tohoku-Oki earthquake was limited to the middle segment, the observed negative residual gravity anomaly area in the southern segment corresponds to the postseismic slip area of the Tohoku-Oki earthquake. A density distribution model can explain the different slip behaviours of the two segments by considering their structural differences. The model indicates that the plate interface in the south was covered with a thick channel layer, as indicated by seismic survey imaging, and this layer resulted in a residual gravity anomaly. Numerical simulations which assumed evident frictional heterogeneity caused by the layer in the south efficiently reproduced M9 earthquakes recurring only in the middle, followed by evident postseismic slips in the south. This study proposes that although the layer makes the megathrust less compliant to seismic slip, it promotes aseismic slips following the growth of seismic slips on the fault in an adjacent region.


2020 ◽  
Author(s):  
Ryoko Nakata ◽  
Takane Hori ◽  
Seiichi Miura ◽  
Ryota Hino

Abstract There are remarkable differences between the middle and southern segments of the Japan Trench in terms of the seismic and aseismic slips on the plate interface and seismic velocity structures. The large coseismic slip of the 2011 Tohoku-Oki earthquake was limited to the middle segment, yet the observed negative residual gravity anomaly area in the southern segment corresponds to the postseismic slip area of the Tohoku-Oki earthquake. A model can explain the different slip behaviors of the two segments by considering their structural differences. The model indicated that the plate interface in the south was covered with a thick channel layer, as noted by seismic survey imaging, and this layer resulted in the residual gravity anomaly. Numerical simulations that assumed obvious frictional heterogeneity caused by the layer existing only in the south successfully reproduced M9 earthquakes recurring only in the middle, followed by evident postseismic slip in the south. We suggest that, while the layer makes the megathrust less compliant to seismic slip, it promotes aseismic slip following the growth of seismic slip on the fault in an adjacent region.


2020 ◽  
Vol 25 (4) ◽  
pp. 463-476
Author(s):  
Ata Eshaghzadeh ◽  
Alireza Hajian

This paper presents an improved nature-based algorithm, namely multivariable modified teaching learning based optimization (MM-TLBO) algorithm, as in an iterative process can estimates the best values for the model parameters in a multi-objective problem. The algorithm works in two computational phases: the teacher phase and the learner phase. The major purpose of the MM-TLBO algorithm is to improve the value of the learners and thus, improving the value of the model parameters which leads to the optimal solution. The variables of each learner (model) are the radius ( R), depth ( h), shape factor ( q), density contrast ( ρ) and axis location ( x0) parameters. We apply MM-TLBO and TLBO methods for the residual gravity anomalies caused by the buried masses with a simple geometry such as spheres, horizontal and vertical cylinders. The efficiency of these methods are also tested by noise corruption synthetic data, as the acceptable results were obtained. The obtained results indicate the better performance the MM-TLBO algorithm than the TLBO algorithm. We have utilized the MM-TLBO for the interpretation of the six residual gravity anomaly profiles from Iran, USA, Sweden and Senegal. The advantage of the MM-TLBO inversion is that it can estimates the best solutions very fast without falling into local minimum and reaches to a premature convergence. The considered primary population for the synthetic and real gravity data are thirty and fifty models. The results show which this method is able to achieve the optimal responses even if a small population of learners had been considered.


Sign in / Sign up

Export Citation Format

Share Document