Offshore broadband processing of varibable-depth streamer data based on deghosting by wavefield extrapolation and iterative inversion method

2020 ◽  
Author(s):  
Jianhua Wang ◽  
Yandong Wang ◽  
Wenbo Sun ◽  
Zhongfei Tong ◽  
Jinmiao Zhang
2019 ◽  
Vol 52 (9) ◽  
pp. 541-552 ◽  
Author(s):  
Xuewen Hou ◽  
Guanqun Su ◽  
Bing Lu ◽  
Xin Wang ◽  
Shengdong Nie

2019 ◽  
Vol 11 (10) ◽  
pp. 1950097 ◽  
Author(s):  
Zhi Liu ◽  
Yanli Sun ◽  
Jianwei Deng ◽  
Dongmei Zhao ◽  
Yue Mei ◽  
...  

This paper presents a comparative study of two typical inverse algorithms, i.e., direct and iterative inversion methods, to reconstruct the shear modulus distribution of linearly elastic solids. Both approaches are based on the finite element framework and compared utilizing both the simulated and experimental data. The reconstruction results demonstrate that both approaches are capable of identifying the nonhomogeneous shear modulus distribution of solids well. It can also be found that the direct inversion method is much faster than the iterative inversion method, whereas the iterative inversion method is capable of yielding better shear modulus ratio between the stiff inclusion and the soft background even with very high noise levels. Afterwards, a thorough comparison on the advantages and disadvantages of these two approaches has been performed. This comparative study provides useful information on the selection of the proper inverse scheme in estimating nonhomogeneous elastic property distribution of soft solids nondestructively.


Geophysics ◽  
1993 ◽  
Vol 58 (8) ◽  
pp. 1136-1147
Author(s):  
Thorbjørn Rekdal ◽  
Durk J. Doornbos

Wavefield extrapolation downward from the surface, as applied in migration and associated inversion methods, is a common procedure to image subsurface reflectors. These methods require adequate (i.e., extensive and unaliased) sampling of the surface wavefield. Seismic tomography on the other hand, relates parameters of the upward propagated wavefield to the diffracting image, and sampling requirements are less severe; it is usually the only option to image deep structures from sparse data. The ordinary form of ray tomography, however, imposes a severe smoothness constraint on the boundary; in particular the “tops” and “valleys” of a relatively rough structure are not well‐resolved. We have implemented a generalized form of tomography, which uses both the ray term and the diffraction term linearized in the boundary perturbation. We introduce a generalized reflection coefficient that can be linearized in terms of the (unknown) boundary gradient, and we demonstrate the adequacy of this approximation with the help of synthetic seismograms. We compare the performance of the new inversion method with migration and ray tomography in a number of model experiments where a source and receiver array are used to image (1) a rough sea bottom and (2) a rough sedimentary layer boundary. In these experiments the new method is superior, especially in the outer part of the inversion region where migration and seismic tomography suffer seriously because of the lack of adequate surface information. Even for well‐controlled surveys there is the potential to successfully image a much larger area of the reflector than is possible with migration. Our experiments involved a single reflector in a known velocity‐density structure. The method’s applicability or modifications required when relaxing these assumptions, remains to be investigated.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. E89-E103 ◽  
Author(s):  
Yan Li ◽  
Taiyue Qi ◽  
Bo Lei ◽  
Zongyang Li ◽  
Wangping Qian

The correct interpretation of full-space transient electromagnetic data has always constituted a critical safety problem during tunnel excavation projects. Targeting the interpretation of water-filled caves under narrow tunnel conditions, we have developed an iterative inversion method based on 3D finite-difference time-domain (FDTD) forward calculations and a direction algorithm. In total, 125 groups of 3D FDTD forward calculation results are analyzed to identify the correlations between the response data and the geometric conditions of the cave. A direction algorithm is established based on the correlations, thereby increasing the iterative inversion convergence speed. Using the proposed iterative inversion method, the location and volume of the water-filled cave in front of the tunnel face are successfully inverted. Through an iterative program, the inversion results of simulations involving the detection of water-filled caves under tunnel conditions are accurately analyzed, and the relative error is less than 10%. The application of the iterative inversion method to the Mingyue Mountain Tunnel project suggests that this method is capable of interpreting the size of water-filled caves and it is valid for a narrow tunnel face with only a single available measurement point. The proposed iterative inversion method can be used alone or in combination with other detection techniques, thereby providing engineers with a better early warning system for detecting water-filled caves in tunnels.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. E21-E28 ◽  
Author(s):  
Yu Zhang ◽  
James Sun ◽  
Carl Notfors ◽  
Samuel H. Gray ◽  
Leon Chernis ◽  
...  

For 3D seismic imaging in structurally complex areas, the use of migration by wavefield extrapolation has become widespread. By its very nature, this family of migration methods operates on data sets that satisfy a wave equation in the context of a single, physically realizable field experiment, such as a common-shot record. However, common-shot migration of data recorded over dipping structures requires a migration aperture much larger than the recording aperture, resulting in extra computations. A different type of wave-equation record, the response to a linear or planar source, can be synthesized from all the common-shot records. Synthesizing these records from common-shot records involves slant-stack processing, or applying delays to the various shots; we call these records delayed-shot records. Delayed-shot records don't suffer from the aperture problems of common-shot records since their recording aperture is the length of the seismic survey. Consequently, delayed-shot records hold potential for efficient, accurate imaging by wavefield extrapolation. We present a formulation of delayed-shot migration in 2D and 3D (linear sources) and its application to 3D marine streamer data. This formulation includes a discussion of sampling theory issues associated with the formation of delayed-shot records. For typical marine data, 2D and 3D delayed-shot migration can be significantly more efficient than common-shot migration. Synthetic and real data examples show that delayed-shot migration produces images comparable to those from common-shot migration.


Sign in / Sign up

Export Citation Format

Share Document