Full-waveform inversion of multicomponent data for horizontally layered VTI media

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC113-WC121 ◽  
Author(s):  
Nishant Kamath ◽  
Ilya Tsvankin

Although full-waveform inversion (FWI) has shown significant promise in reconstructing heterogeneous velocity fields, most existing methodologies are limited to acoustic models. We extend FWI to multicomponent (PP and PS) data from anisotropic media, with the current implementation limited to a stack of horizontal, homogeneous VTI (transversely isotropic with a vertical symmetry axis) layers. The algorithm is designed to estimate the interval vertical P- and S-wave velocities ([Formula: see text] and [Formula: see text]) and Thomsen parameters [Formula: see text] and [Formula: see text] from long-spread PP and PSV reflections. The forward-modeling operator is based on the anisotropic reflectivity technique, and the inversion is performed in the time domain using the gradient (Gauss-Newton) method. We employ nonhyperbolic semblance analysis and Dix-type equations to build the initial model. To identify the medium parameters constrained by the data, we perform eigenvalue/eigenvector decomposition of the approximate Hessian matrix for a VTI layer embedded between isotropic media. Analysis of the eigenvectors shows that the parameters [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] (density is assumed to be known) can be resolved not only by joint inversion of PP and PS data, but also with PP reflections alone. Although the inversion becomes more stable with increasing spreadlength-to-depth ([Formula: see text]) ratio, the parameters of the three-layer model are constrained even by PP data acquired on conventional spreads ([Formula: see text]). For multilayered VTI media, the sensitivity of the objective function to the interval parameters decreases with depth. Still, it is possible to resolve [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for the deeper layers using PP-waves, if the ratio [Formula: see text] for the bottom of the layer reaches two. Mode-converted waves provide useful additional constraints for FWI, which become essential for smaller spreads. The insights gained here by examining horizontally layered models should help guide the inversion for heterogeneous TI media.

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. R247-R259 ◽  
Author(s):  
Yuwei Wang ◽  
Liangguo Dong ◽  
Yuzhu Liu ◽  
Jizhong Yang

Elastic full-waveform inversion (EFWI) of multicomponent seismic data is a powerful tool for estimating the subsurface elastic parameters with high accuracy. However, the trade-offs between multiple parameters increase the nonlinearity of EFWI. Although the conventional diagonal-approximate Hessian matrix describes the illumination and limited bandwidth effects, it ignores the trade-off effects and decreases the convergence rate of EFWI. We have developed a block-diagonal pseudo-Hessian operator for 2D frequency-domain EFWI to take into account the approximate trade-offs among the P-wave (compressional-wave) velocity, S-wave (shear-wave) velocity, and density without extra computational costs on forward simulations. The Hessian matrix tends toward a block-diagonal matrix as the frequency grows to infinity; thus, the proposed block-diagonal pseudo-Hessian matrix is more accurate at higher frequencies. The inverse of the block-diagonal pseudo-Hessian matrix is used as a preconditioner for the nonlinear conjugate-gradient method to simultaneously reconstruct P- and S-wave velocities and density. This approach effectively mitigates the crosstalk artifacts by correcting the gradients from the trade-off effects and produces more rapid inversion convergence, which becomes more significant at higher frequencies. Synthetic experiments on an inclusion model and the elastic Marmousi2 model demonstrate its feasibility and validity in EFWI.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C163-C174 ◽  
Author(s):  
Nishant Kamath ◽  
Ilya Tsvankin ◽  
Esteban Díaz

One of the main challenges for full-waveform inversion (FWI) is taking into account both anisotropy and elasticity. Here, we perform elastic FWI for a synthetic 2D VTI (transversely isotropic with a vertical symmetry axis) model based on the geologic section at Valhall field in the North Sea. Multicomponent surface data are generated by a finite-difference code. We apply FWI in the time domain using a multiscale approach with three frequency bands. An approximate inverse Hessian matrix, computed using the L-BFGS-B algorithm, is employed to scale the gradients of the objective function and improve the convergence. In the absence of significant diving-wave energy in the deeper part of the section, the model is updated primarily with reflection data. An oblique displacement source, which excites sufficiently intensive shear waves in the conventional offset range, helps provide more accurate updates in the Shear-wave vertical velocity, especially in the shallow layers. We test three model parameterizations, which exhibit different radiation patterns and, therefore, create different parameter trade-offs. Whereas most examples are for a constant-density model, we also generate a density field using Gardner’s relationship and invert for the density along with the velocity parameters. The parameterizations that combine velocities and anisotropy coefficients generally yield superior results to the one that includes only velocities, provided that a reasonably accurate initial model is available.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. R299-R308 ◽  
Author(s):  
Antoine Guitton ◽  
Tariq Alkhalifah

Choosing the right parameterization to describe a transversely isotropic medium with a vertical symmetry axis (VTI) allows us to match the scattering potential of these parameters to the available data in a way that avoids a potential tradeoff and focuses on the parameters to which the data are sensitive. For 2D elastic full-waveform inversion in VTI media of pressure components and for data with a reasonable range of offsets (as with those found in conventional streamer data acquisition systems), assuming that we have a kinematically accurate normal moveout velocity ([Formula: see text]) and anellipticity parameter [Formula: see text] (or horizontal velocity [Formula: see text]) obtained from tomographic methods, a parameterization in terms of horizontal velocity [Formula: see text], [Formula: see text], and [Formula: see text] is preferred to the more conventional parameterization in terms of [Formula: see text], [Formula: see text], and [Formula: see text]. In the [Formula: see text], [Formula: see text], and [Formula: see text] parameterization and for reasonable scattering angles (<[Formula: see text]), [Formula: see text] acts as a “garbage collector” and absorbs most of the amplitude discrepancies between the modeled and observed data, more so when density [Formula: see text] and S-wave velocity [Formula: see text] are not inverted for (a standard practice with streamer data). On the contrary, in the [Formula: see text], [Formula: see text], and [Formula: see text] parameterization, [Formula: see text] is mostly sensitive to large scattering angles, leaving [Formula: see text] exposed to strong leakages from [Formula: see text] mainly. These assertions will be demonstrated on the synthetic Marmousi II as well as a North Sea ocean bottom cable data set, in which inverting for the horizontal velocity rather than the vertical velocity yields more accurate models and migrated images.


2016 ◽  
Vol 4 (4) ◽  
pp. T627-T635
Author(s):  
Yikang Zheng ◽  
Wei Zhang ◽  
Yibo Wang ◽  
Qingfeng Xue ◽  
Xu Chang

Full-waveform inversion (FWI) is used to estimate the near-surface velocity field by minimizing the difference between synthetic and observed data iteratively. We apply this method to a data set collected on land. A multiscale strategy is used to overcome the local minima problem and the cycle-skipping phenomenon. Another obstacle in this application is the slow convergence rate. The inverse Hessian can enhance the poorly blurred gradient in FWI, but obtaining the full Hessian matrix needs intensive computation cost; thus, we have developed an efficient method aimed at the pseudo-Hessian in the time domain. The gradient in our FWI workflow is preconditioned with the obtained pseudo-Hessian and a synthetic example verifies its effectiveness in reducing computational cost. We then apply the workflow on the land data set, and the inverted velocity model is better resolved compared with traveltime tomography. The image and angle gathers we get from the inversion result indicate more detailed information of subsurface structures, which will contribute to the subsequent seismic interpretation.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. C53-C68 ◽  
Author(s):  
Nishant Kamath ◽  
Ilya Tsvankin

Most existing implementations of full-waveform inversion (FWI) are limited to acoustic approximations. In this paper, we present an algorithm for time-domain elastic FWI in laterally heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The adjoint-state method is employed to derive the gradients of the objective function with respect to the stiffness coefficients and then to a chosen set of VTI parameters. To test the algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform 2D FWI of multicomponent transmission data for two different model parameterizations. To analyze the sensitivity of the objective function to the model parameters, the Fréchet kernel of FWI is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green’s function. The amplitude of the kernel (“radiation pattern”) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. Then we convert the general expressions into simple approximations for the radiation patterns of P- and SV-waves in VTI media. These analytic developments provide valuable insight into the potential of multicomponent elastic FWI and help explain the numerical results for models with Gaussian anomalies in the VTI parameters.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


2015 ◽  
Author(s):  
Ju-Won Oh* ◽  
Tariq Alkhalifah ◽  
Dong-Joo Min

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. R45-R55 ◽  
Author(s):  
Espen Birger Raknes ◽  
Wiktor Weibull

In reverse time migration (RTM) or full-waveform inversion (FWI), forward and reverse time propagating wavefields are crosscorrelated in time to form either the image condition in RTM or the misfit gradient in FWI. The crosscorrelation condition requires both fields to be available at the same time instants. For large-scale 3D problems, it is not possible, in practice, to store snapshots of the wavefields during forward modeling due to extreme storage requirements. We have developed an approximate wavefield reconstruction method that uses particle velocity field recordings on the boundaries to reconstruct the forward wavefields during the computation of the reverse time wavefields. The method is computationally effective and requires less storage than similar methods. We have compared the reconstruction method to a boundary reconstruction method that uses particle velocity and stress fields at the boundaries and to the optimal checkpointing method. We have tested the methods on a 2D vertical transversely isotropic model and a large-scale 3D elastic FWI problem. Our results revealed that there are small differences in the results for the three methods.


Sign in / Sign up

Export Citation Format

Share Document