scholarly journals Structure-coupled joint inversion of geophysical and hydrological data

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. ID1-ID14 ◽  
Author(s):  
Tobias Lochbühler ◽  
Joseph Doetsch ◽  
Ralf Brauchler ◽  
Niklas Linde

In groundwater hydrology, geophysical imaging holds considerable promise for improving parameter estimation, due to the generally high resolution and spatial coverage of geophysical data. However, inversion of geophysical data alone cannot unveil the distribution of hydraulic conductivity. Jointly inverting geophysical and hydrological data allows us to benefit from the advantages of geophysical imaging and, at the same time, recover the hydrological parameters of interest. We have applied a coupling strategy between geophysical and hydrological models that is based on structural similarity constraints. Model combinations, for which the spatial gradients of the inferred parameter fields are not aligned in parallel, are penalized in the inversion. This structural coupling does not require introducing a potentially weak, unknown, and nonstationary petrophysical relation to link the models. The method was first tested on synthetic data sets and then applied to two combinations of geophysical/hydrological data sets from a saturated gravel aquifer in northern Switzerland. Crosshole ground-penetrating radar (GPR) traveltimes were jointly inverted with hydraulic tomography data, as well as with tracer mean arrival times, to retrieve the 2D distribution of GPR velocities and hydraulic conductivities. In the synthetic case, incorporating the GPR data through a joint inversion framework improved the resolution and localization properties of the estimated hydraulic conductivity field. For the field study, recovered hydraulic conductivities were in general agreement with flowmeter data.

Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F239-F250 ◽  
Author(s):  
Fernando A. Monteiro Santos ◽  
Hesham M. El-Kaliouby

Joint or sequential inversion of direct current resistivity (DCR) and time-domain electromagnetic (TDEM) data commonly are performed for individual soundings assuming layered earth models. DCR and TDEM have different and complementary sensitivity to resistive and conductive structures, making them suitable methods for the application of joint inversion techniques. This potential joint inversion of DCR and TDEM methods has been used by several authors to reduce the ambiguities of the models calculated from each method separately. A new approach for joint inversion of these data sets, based on a laterally constrained algorithm, was found. The method was developed for the interpretation of soundings collected along a line over a 1D or 2D geology. The inversion algorithm was tested on two synthetic data sets, as well as on field data from Saudi Arabia. The results show that the algorithm is efficient and stable in producing quasi-2D models from DCR and TDEM data acquired in relatively complex environments.


2013 ◽  
Vol 195 (3) ◽  
pp. 1745-1762 ◽  
Author(s):  
A. Sosa ◽  
A. A. Velasco ◽  
L. Velazquez ◽  
M. Argaez ◽  
R. Romero

Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. H33-H44 ◽  
Author(s):  
Hendrik Paasche ◽  
Jens Tronicke ◽  
Klaus Holliger ◽  
Alan G. Green ◽  
Hansruedi Maurer

Inversions of an individual geophysical data set can be highly nonunique, and it is generally difficult to determine petrophysical parameters from geophysical data. We show that both issues can be addressed by adopting a statistical multiparameter approach that requires the acquisition, processing, and separate inversion of two or more types of geophysical data. To combine information contained in the physical-property models that result from inverting the individual data sets and to estimate the spatial distribution of petrophysical parameters in regions where they are known at only a few locations, we demonstrate the potential of the fuzzy [Formula: see text]-means (FCM) clustering technique. After testing this new approach on synthetic data, we apply it to limited crosshole georadar, crosshole seismic, gamma-log, and slug-test data acquired within a shallow alluvial aquifer. The derived multiparameter model effectively outlines the major sedimentary units observed in numerous boreholes and provides plausible estimates for the spatial distributions of gamma-ray emitters and hydraulic conductivity.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 492-501 ◽  
Author(s):  
Zhiyi Zhang ◽  
Partha S. Routh ◽  
Douglas W. Oldenburg ◽  
David L. Alumbaugh ◽  
Gregory A. Newman

Inversions of electromagnetic data from different coil configurations provide independent information about geological structures. We develop a 1-D inversion algorithm that can invert data from the horizontal coplanar (HC), vertical coplanar, coaxial (CA), and perpendicular coil configurations separately or jointly. The inverse problem is solved by minimizing a model objective function subject to data constraints. Tests using synthetic data from 1-D models indicate that if data are collected at a sufficient number of frequencies, then the recovered models from individual inversions of different coil systems can be quite similar. However, if only a limited number of frequencies are available, then joint inversion of data from different coils produces a better model than the individual inversions. Tests on 3-D synthetic data sets indicate that 1-D inversions can be used as a fast and approximate tool to locate anomalies in the subsurface. Also for the test example presented here, the joint inversion of HC and CA data over a 3-D conductivity provided a better model than that produced by the individual inversion of the data sets.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 849-860 ◽  
Author(s):  
Jörg Herwanger ◽  
Hansruedi Maurer ◽  
Alan G. Green ◽  
Jürg Leckebusch

A vertical‐gradient magnetic system based on optically pumped Cesium sensors has been used to map subtle magnetic anomalies across infilled pit houses and ditches at a medieval archeological site in northern Switzerland. For estimating the locations and dimensions of these features from the recorded data, we have designed and implemented an appropriate inversion scheme. Tests of this scheme on realistic synthetic data sets suggested that suitable minimum magnetic susceptibility contrasts and smoothing parameters for the inversion may be directly extracted from the data. Inversions with minimum magnetic susceptibility contrasts generated causative bodies with maximum plausible sizes. By using higher magnetic susceptibility contrasts, a complete suite of models that matched the data equally well was produced. To constrain better the magnetic susceptibility constrast within a selected area of the archeological site, shallow samples of topsoil and sediment were analyzed in the laboratory. An inversion based on the measured magnetic susceptibility contrast yielded reliable estimates of the locations, 3-D geometries, and sizes of two small pit houses. The depth extent of one pit house was subsequently verified by shallow drilling. We concluded that inversions of vertical‐gradient magnetic data constrained by magnetic susceptibility or shallow borehole information are rapid and inexpensive means of providing key knowledge on the depth distribution of inductively magnetized bodies.


Author(s):  
Francesca Pace ◽  
Alessandro Santilano ◽  
Alberto Godio

AbstractThis paper reviews the application of the algorithm particle swarm optimization (PSO) to perform stochastic inverse modeling of geophysical data. The main features of PSO are summarized, and the most important contributions in several geophysical fields are analyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies that have been adopted to model the Earth’s subsurface and then to undertake a critical evaluation of their benefits and limitations. Original works have been selected from the existing geophysical literature to illustrate successful PSO applied to the interpretation of electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data, self-potential, direct current and seismic data. These case studies are critically described and compared. In addition, joint optimization of multiple geophysical data sets by means of multi-objective PSO is presented to highlight the advantage of using a single solver that deploys Pareto optimality to handle different data sets without conflicting solutions. Finally, we propose best practices for the implementation of a customized algorithm from scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the benefit of PSO practitioners or inexperienced researchers.


2014 ◽  
Vol 50 (4) ◽  
pp. 3502-3522 ◽  
Author(s):  
A. Soueid Ahmed ◽  
A. Jardani ◽  
A. Revil ◽  
J. P. Dupont

2014 ◽  
Vol 7 (3) ◽  
pp. 781-797 ◽  
Author(s):  
P. Paatero ◽  
S. Eberly ◽  
S. G. Brown ◽  
G. A. Norris

Abstract. The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.


2021 ◽  
Author(s):  
Patricia MacQueen ◽  
Joachim Gottsmann ◽  
Matthew Pritchard ◽  
Nicola Young ◽  
Faustino Ticona J. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document