3-D inversions of magnetic gradiometer data in archeological prospecting: Possibilities and limitations

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 849-860 ◽  
Author(s):  
Jörg Herwanger ◽  
Hansruedi Maurer ◽  
Alan G. Green ◽  
Jürg Leckebusch

A vertical‐gradient magnetic system based on optically pumped Cesium sensors has been used to map subtle magnetic anomalies across infilled pit houses and ditches at a medieval archeological site in northern Switzerland. For estimating the locations and dimensions of these features from the recorded data, we have designed and implemented an appropriate inversion scheme. Tests of this scheme on realistic synthetic data sets suggested that suitable minimum magnetic susceptibility contrasts and smoothing parameters for the inversion may be directly extracted from the data. Inversions with minimum magnetic susceptibility contrasts generated causative bodies with maximum plausible sizes. By using higher magnetic susceptibility contrasts, a complete suite of models that matched the data equally well was produced. To constrain better the magnetic susceptibility constrast within a selected area of the archeological site, shallow samples of topsoil and sediment were analyzed in the laboratory. An inversion based on the measured magnetic susceptibility contrast yielded reliable estimates of the locations, 3-D geometries, and sizes of two small pit houses. The depth extent of one pit house was subsequently verified by shallow drilling. We concluded that inversions of vertical‐gradient magnetic data constrained by magnetic susceptibility or shallow borehole information are rapid and inexpensive means of providing key knowledge on the depth distribution of inductively magnetized bodies.

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. B269-B279 ◽  
Author(s):  
Vladislav Kaminski ◽  
Richard W. Hammack ◽  
William Harbert ◽  
Garret A. Veloski ◽  
James Sams ◽  
...  

We studied the problem of determining accurately the location of abandoned and sometimes undocumented wells and the challenging and increasingly important task related to subsurface reservoir integrity and regional economic development. We reviewed a variety of semiquantitative methods based on geophysical workflows, and we tested these with airborne magnetic data collected at two field sites. Our main conclusion is that airborne magnetic surveys represent a high-value tool to aid in the accurate determination of abandoned well locations and characteristics. At one site, two surveys were collected at slightly different altitudes to compare workflow robustness and allow the observed vertical magnetic gradient to be included in well detection workflows. We also investigated using focal zone anomaly statistics (using the magnetic field intensity and its first and second horizontal derivatives), analytic signal, tilt derivative, and calculated vertical gradient. In addition, we used a 3D inversion of a small subset of data to investigate the successful recovery of well-related magnetic susceptibility distribution and estimate subsurface well topology. The recovered magnetic susceptibility volume showed distinctive vertically elongated objects that correspond to known wells. Maximum likelihood estimation and confidence calculations were then applied to these data sets and indicated that high-confidence well locations could be determined and characterized using such airborne total magnetic data.


2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Sehah Sehah ◽  
Sukmaji Anom Raharjo ◽  
Urip Nurwijayanto Prabowo

Two dimensional modeling to basaltic rocks intrusion in Pekuncen and Karanglewas Villages Jatilawang District, Banyumas Regency, Central Java based on the local magnetic anomalies data has been carried out in March – June 2020. The amount of magnetic data obtained from the acquisition in the field was 239 data stretching in position of 109.107222° – 109.134944°E and 7.561361° – 7.577306°S, with the local magnetic anomalies values ranging of -2,961.11 – 1,516.31 nT. To model anomalous sources in the subsurface in two dimensions, then the local magnetic anomalies data is transformed into pseudogravity anomalies data, so that anomalous value can be obtained as -27.815 – 41.087 mGal. Based on the pseudogravity anomalous map, the basaltic rock intrusion is interpreted to be located in the eastern part of the research area, so modeling of anomalous sources is conducted in this area. The results of 2D-modeling to local magnetic anomalies data indicate the presence of anomalous object interpreted as basaltic rock intrusion with magnetic susceptibility contrast value of 0.0223 cgs, located at depth of 52.61 – 505.97 m and a lateral length of 1777.94 m. This rock intrudes sediment rock from the Halang Formation and is connected to other basaltic rock near the surface with magnetic susceptibility contrast value of 0.0165 cgs, located at depth of 1.94 – 80.90 m and lateral length of 751.83 m. The results of lithological interpretation are in accordance with the geological information of the research area.


2020 ◽  
Vol 221 (1) ◽  
pp. 504-520
Author(s):  
Claire Birnie ◽  
Kit Chambers ◽  
Doug Angus ◽  
Anna L Stork

SUMMARY Testing with synthetic data sets is a vital stage in an algorithm’s development for benchmarking the algorithm’s performance. A common addition to synthetic data sets is White, Gaussian Noise (WGN) which is used to mimic noise that would be present in recorded data sets. The first section of this paper focuses on comparing the effects of WGN and realistic modelled noise on standard microseismic event detection and imaging algorithms using synthetic data sets with recorded noise as a benchmark. The data sets with WGN underperform on the trace-by-trace algorithm while overperforming on algorithms utilizing the full array. Throughout, the data sets with realistic modelled noise perform near identically to the recorded noise data sets. The study concludes by testing an algorithm that simultaneously solves for the source location and moment tensor of a microseismic event. Not only does the algorithm fail to perform at the signal-to-noise ratios indicated by the WGN results but the results with realistic modelled noise highlight pitfalls of the algorithm not previously identified. The misleading results from the WGN data sets highlight the need to test algorithms under realistic noise conditions to gain an understanding of the conditions under which an algorithm can perform and to minimize the risk of misinterpretation of the results.


1989 ◽  
Vol 20 (2) ◽  
pp. 25 ◽  
Author(s):  
P.M. Smith ◽  
M. Whitehead

The presence of a large anomalous structure in the northern part of Permit AC/P2 in the Timor Sea has been recognised ever since seismic data were first acquired in the area. Historically, however, sparse seismic coverage has always prevented a detailed and unambiguous interpretation of the complicated structure. In order to overcome this problem, some 2000 km of 3D seismic data were acquired over the feature. In conjunction with this seismic survey, detailed gravity and magnetic data sets were also recorded over the structure.Interpretation of the new seismic data indicated the presence of a piercement structure which is associated with a small negative Bouguer gravity anomaly and a magnetic intensity anomaly resulting from a positive susceptibility contrast. Modelling of the magnetic data indicated that an acidic or intermediate intrusive body was the most likely cause of the piercement structure. The presence of an acidic intrusive body was consistent with the gravity data which indicated that no large density contrast existed between the material of the piercement structure and the surrounding sediments.The combined interpretation of these three data sets was tested by a well, Paqualin-1, drilled on the flank of the piercement structure. The well encountered a thick evaporite sequence with associated thin bands of magnetitie and intermediate igneous rocks. It was logged with a three component downhole magnetic probe and forward magentic modelling work incorporating the results of the magnetic log gave good agreement with the observed aeromagnetic profiles.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S197-S205 ◽  
Author(s):  
Zhaolun Liu ◽  
Abdullah AlTheyab ◽  
Sherif M. Hanafy ◽  
Gerard Schuster

We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength [Formula: see text] of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third [Formula: see text]. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half [Formula: see text].


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. ID1-ID14 ◽  
Author(s):  
Tobias Lochbühler ◽  
Joseph Doetsch ◽  
Ralf Brauchler ◽  
Niklas Linde

In groundwater hydrology, geophysical imaging holds considerable promise for improving parameter estimation, due to the generally high resolution and spatial coverage of geophysical data. However, inversion of geophysical data alone cannot unveil the distribution of hydraulic conductivity. Jointly inverting geophysical and hydrological data allows us to benefit from the advantages of geophysical imaging and, at the same time, recover the hydrological parameters of interest. We have applied a coupling strategy between geophysical and hydrological models that is based on structural similarity constraints. Model combinations, for which the spatial gradients of the inferred parameter fields are not aligned in parallel, are penalized in the inversion. This structural coupling does not require introducing a potentially weak, unknown, and nonstationary petrophysical relation to link the models. The method was first tested on synthetic data sets and then applied to two combinations of geophysical/hydrological data sets from a saturated gravel aquifer in northern Switzerland. Crosshole ground-penetrating radar (GPR) traveltimes were jointly inverted with hydraulic tomography data, as well as with tracer mean arrival times, to retrieve the 2D distribution of GPR velocities and hydraulic conductivities. In the synthetic case, incorporating the GPR data through a joint inversion framework improved the resolution and localization properties of the estimated hydraulic conductivity field. For the field study, recovered hydraulic conductivities were in general agreement with flowmeter data.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1857-1869 ◽  
Author(s):  
Colin G. Farquharson ◽  
Douglas W. Oldenburg ◽  
Partha S. Routh

Magnetic susceptibility affects electromagnetic (EM) loop–loop observations in ways that cannot be replicated by conductive, nonsusceptible earth models. The most distinctive effects are negative in‐phase values at low frequencies. Inverting data contaminated by susceptibility effects for conductivity alone can give misleading models: the observations strongly influenced by susceptibility will be underfit, and those less strongly influenced will be overfit to compensate, leading to artifacts in the model. Simultaneous inversion for both conductivity and susceptibility enables reliable conductivity models to be constructed and can give useful information about the distribution of susceptibility in the earth. Such information complements that obtained from the inversion of static magnetic data because EM measurements are insensitive to remanent magnetization. We present an algorithm that simultaneously inverts susceptibility‐affected data for 1D conductivity and susceptibility models. The solution is obtained by minimizing an objective function comprised of a sum‐of‐squares measure of data misfit and sum‐of‐squares measures of the amounts of structure in the conductivity and susceptibility models. Positivity of the susceptibilities is enforced by including a logarithmic barrier term in the objective function. The trade‐off parameter is automatically estimated using the generalized cross validation (GCV) criterion. This enables an appropriate fit to the observations to be achieved even if good noise estimates are not available. As well as synthetic examples, we show the results of inverting airborne data sets from Australia and Heath Steele Stratmat, New Brunswick.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. L69-L73 ◽  
Author(s):  
Neal Dannemiller ◽  
Yaoguo Li

The characterization and interpretation of magnetic anomalies rely upon knowledge of the total magnetization direction. Magnetization is usually assumed to consist solely, or primarily, of induced magnetization. The presence of strong remanent magnetization can alter the direction significantly and consequently adversely affect the interpretation, leading to erroneous sizes or shapes of causative bodies. Therefore, it is imperative to have some understanding of the total magnetization direction. We propose a method based upon the correlation between two quantities in magnetic data interpretation: the vertical gradient and the total gradient of the reduced-to-pole (RTP) field. This method is tested on both synthetic and field data sets. The results show that the method is effective in a variety of situations, including those with two-dimensional and three-dimensional dipping bodies and a field example that has a large deviation between the inducing field direction and the total magnetization direction.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1729-1739 ◽  
Author(s):  
Christophe Benech ◽  
Alain Tabbagh ◽  
Guy Desvignes

Magnetic and electromagnetic measurements are influenced by magnetic susceptibility and, thus, are widely used in geophysical surveys for archeology or pedology. To date, the data inversion is performed separately. A filtering process incorporating both types of data is presented here. After testing the algorithm with synthetic data, the algorithm is used in several case studies in archeological prospecting. This approach presents two advantages: establishing the presence of remanent magnetizations (viscous or thermoremanent), and achieving more refined depth analysis of the anomaly.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. F213-F223 ◽  
Author(s):  
Yutaka Sasaki ◽  
Jung-Ho Kim ◽  
Seong-Jun Cho

Electromagnetic (EM) induction measurements are affected by resistivity and magnetic susceptibility. Thus, inverting EM data for resistivity alone can give misleading models if susceptible effects are strong. An inversion algorithm is presented to simultaneously recover multidimensional distributions of resistivity and susceptibility from various types of loop-loop frequency-domain EM data. The algorithm adopts a staggered-grid finite-difference method for the 3D forward solutions and computes the sensitivities with respect to resistivity and susceptibility from the forward solutions using the reciprocity principle. The algorithm is tested on synthetic data sets from ground-based small-loop, airborne, and Slingram EM surveys. It is shown that the simultaneous inversion of the small-loop EM data collected at a singleheight is unstable and likely to produce unreliable susceptibility models because the effect of susceptibility is nearly independent of the frequency. However, if the data are obtained for multiple heights or different loop configurations, simultaneous inversion can produce more reliable susceptibility and resistivity models even if the data are contaminated by offset errors. It is also shown that although the simultaneous inversion of airborne EM data is relatively stable, adding data obtained at different heights helps to increase the reliability of the resistivity and susceptibility models. Among the loop-loop EM methods discussed here, the Slingram method is relatively insensitive to susceptibility anomalies and thus cannot be used to recover the susceptibility distribution via inversion even if the data are obtained using different loop configurations.


Sign in / Sign up

Export Citation Format

Share Document