On the electromagnetic response of a resistive cylinder buried in a conductive host

Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. E341-E351 ◽  
Author(s):  
Andrei Swidinsky

The frequency-domain electromagnetic response of a confined conductor buried in a resistive host has received much attention, particularly in the context of mineral exploration. In contrast, the problem of the electromagnetic response of a confined resistor buried in a conductive host has been less thoroughly studied. However, resistive targets are important in geotechnical and hydrologic studies, archaeological prospecting, and, more recently, offshore hydrocarbon exploration. I analytically address the problem of the electromagnetic response of a completely resistive cylindrical cavity buried in a conductive host in the presence of a simplified 2D electric dipole source. In contrast to the confined conductor, which channels and induces current systems, the confined resistor deflects current and produces additional eddy current systems in the conductive host. I apply this theory to model the response of a grounded electric dipole-dipole system operating over a range of frequencies from 0 Hz to 10 kHz, in the presence of a horizontal 5-m radius insulating cylinder located 1-m beneath the surface of a uniform earth. This represents a common hazard encountered during mining and civil engineering operations. Results show that such an insulating cavity increases the recorded electric field amplitude and phase delay at all transmitted frequencies. These observations suggest that a broadband electromagnetic prospecting system may provide additional information about the location and extent of a void, over and above a standard dipole-dipole resistivity survey. When the host skin depth is much larger than all other length scales, the response can be approximated by an equivalent single dipole unless the cylinder’s radius is much larger than its distance from the transmitter. This result provids a useful rule of thumb to determine the acceptable range over which a resistive target can be modeled by a distribution of dipoles.

Geophysics ◽  
1993 ◽  
Vol 58 (2) ◽  
pp. 198-214 ◽  
Author(s):  
Martyn J. Unsworth ◽  
Bryan J. Travis ◽  
Alan D. Chave

A numerical solution for the frequency domain electromagnetic response of a two‐dimensional (2-D) conductivity structure to excitation by a three‐dimensional (3-D) current source has been developed. The fields are Fourier transformed in the invariant conductivity direction and then expressed in a variational form. At each of a set of discrete spatial wavenumbers a finite‐element method is used to obtain a solution for the secondary electromagnetic fields. The finite element uses exponential elements to efficiently model the fields in the far‐field. In combination with an iterative solution for the along‐strike electromagnetic fields, this produces a considerable reduction in computation costs. The numerical solutions for a horizontal electric dipole are computed and shown to agree with closed form expressions and to converge with respect to the parameterization. Finally some simple examples of the electromagnetic fields produced by horizontal electric dipole sources at both the seafloor and air‐earth interface are presented to illustrate the usefulness of the code.


Geophysics ◽  
1970 ◽  
Vol 35 (3) ◽  
pp. 476-489 ◽  
Author(s):  
J. H. Coggon ◽  
H. F. Morrison

Numerical evaluation of integral expressions for the fields about a vertical magnetic dipole in the sea allows analysis of the electromagnetic response over wide ranges of sea induction number and sea floor conductivity. Our analysis indicates that a marine electromagnetic system for measurement of bottom conductivity variations could readily be designed, with such applications as oceanographic and geologic studies, and mineral exploration. For a source‐receiver system on a homogeneous sea bottom, it is found that: (i) when the ratio k=(sea‐bed conductivity)/(seawater conductivity) is greater than about 0.03, both horizontal and vertical magnetic fields are useful for measurement of bottom conductivity at sea induction numbers less than 30 [induction number =√2 (horizontal transmitter‐receiver separation/skin depth)]. A separation of 30 m and frequencies in the range 300–3500 hz appear suitable for investigation of the upper few meters of unconsolidated bottom sediments. (ii) When the ratio k is less than 0.03, sea induction numbers from 10 to a few hundred are required for detection of seabed conductivity variations. In this case, the horizontal magnetic field, resulting from energy transmission mainly through the seafloor, is the suitable field to use. Electromagnetic sounding of indurated rocks may thus call for frequencies of 100 to 20,000 hz at a separation of 200 m. Field strengths vary strongly with relative sea depth D/R (D=sea depth, R=horizontal source‐receiver separation) when D/R is small; but sensitivity to bottom conductivity is little affected by D/R. Elevation of source and receiver above a seafloor less conductive than seawater reduces field strengths and sensitivity to seabed properties.


2020 ◽  
Vol 25 (4) ◽  
pp. 529-543
Author(s):  
Xian-Xiang Wang ◽  
Ju-Zhi Deng

CSAMT exploration generally adopts a single dipole as the transmitter. The single dipole source has the apparent disadvantages–there are weak areas for all components, Ey and Hx are weak in the area where Ex and Hy are reliable. Moreover, it is hard to deploy the source with a specific direction in a rugged mountainous area. Given the shortcomings of the single dipole source, multi-dipole sources are introduced into CSAMT exploration. Although the dipole sources follow the principle of vector synthesis, the length of the source in actual exploration can last for several kilometers and the offset is generally a few kilometers. In this case, the source can no longer be regarded as a single dipole in the near-field zone. The electromagnetic field in this region becomes relatively complicated. We first compare the similarities and differences of electromagnetic field generated by vector synthesis source and multi-dipole source through the Ex radiation patterns. Then, we study the factors that affect electromagnetic response due to the substitution of the double-dipole source with the vector synthesis source. The measured EM fields is affected by the source length, frequency, the source angle, the offset, and the resistivity.Finally, we apply the double-dipole source to the 1D and 3D geological model and compare the difference between the electromagnetic field generated by the double-dipole source and that generated by the vector synthesis source. Usually, the difference is very obvious in the near-field zone, and is almost negligible in the far-field zone.


2014 ◽  
Vol 513-517 ◽  
pp. 3340-3344
Author(s):  
Jia Bin Yan ◽  
Xiang Yu Huang ◽  
Peng Yu Wu

Electromagnetic (EM) field is often referred to diffusion (quasi-static assumption) that displacement currents are neglected during data processing in geophysical application, while the ratio of conduct currents to displacement currents is higher than 10, that is ,we think EM field is diffusion dominated and wave dominate for the ratio less than 0.1. Our simulating with Horizontal Electric Dipole Field indicated that frequency range of wave dominated is that the ratio is less than 0.007, the magnitude curves of EM component and impedance referring to diffusion and wave are different from those of diffusion. And in transform zone () the curves are different from those of wave and diffusion.


2019 ◽  
Vol 219 (3) ◽  
pp. 1698-1716 ◽  
Author(s):  
M Malovichko ◽  
A V Tarasov ◽  
N Yavich ◽  
M S Zhdanov

SUMMARY This paper presents a feasibility study of using the controlled-source frequency-domain electromagnetic (CSEM) method in mineral exploration. The method has been widely applied for offshore hydrocarbon exploration; however, nowadays this method is rarely used on land. In order to conduct this study, we have developed a fully parallelized forward modelling finite-difference (FD) code based on the iterative solver with contraction-operator preconditioner. The regularized inversion algorithm uses the Gauss–Newton method to minimize the Tikhonov parametric functional with the Laplacian-type stabilizer. A 3-D parallel inversion code, based on the iterative finite-difference solver with the contraction-operator preconditioner, has been evaluated for the solution of the large-scale inverse problems. Using the computer simulation for a synthetic model of Sukhoi Log gold deposit, we have compared the CSEM method with the conventional direct current sounding and the CSEM survey with a single remote transmitter. Our results suggest that, a properly designed electromagnetic survey together with modern 3-D inversion could provide detailed information about the geoelectrical structure of the mineral deposit.


Geophysics ◽  
1958 ◽  
Vol 23 (1) ◽  
pp. 128-133 ◽  
Author(s):  
James Paul Wesley

A dyke of sulfide ore may be geophysically prospected by observing its electromagnetic response to a slowly oscillating magnetic dipole source. An excellent first approximation of the fields generated is obtained by considering the idealized case of a dyke of infinite conductivity and vanishing thickness in a vacuum. Surprisingly, this idealized problem can be solved exactly in terms of a newly discovered Green’s function for Laplace’s equation (in three dimensions) which is simply expressed in closed form. The magnetic scalar potential and the magnetic field are given for final results.


Geophysics ◽  
1972 ◽  
Vol 37 (2) ◽  
pp. 337-350 ◽  
Author(s):  
Richard G. Geyer

Theoretical solutions for the electromagnetic response of a dipping interface in the field of normally incident plane waves are given in the form of inverse Lebedev‐Kontorovich transforms. When the lateral resistivity contrast becomes very large, the resulting integral solutions simplify considerably and allow ready numerical evaluation. The amplitude response of the vertical magnetic field seems most diagnostic of the structural attitude of sloping interfaces, even though the vertical magnetic field phase appears relatively insensitive to dip changes compared to horizontal electric field phase. The disturbance in the homogeneity of the field caused by the presence of an inclined contact is postulated to be due to cylindrically diffused waves generated by the dipping interface and propagating along the earth’s surface. It would then seem that formulation of plane‐wave impedances from orthogonal components of the surface electric and magnetic fields would only be applicable at distances from the interface which are large relative to a skin depth in either layer. The results presented here should prove to be useful in detecting and defining sloping interfaces or in avoiding their effects.


Geophysics ◽  
1994 ◽  
Vol 59 (11) ◽  
pp. 1680-1694 ◽  
Author(s):  
Wei Qian ◽  
David E. Boerner

We derive an integral equation to describe the electromagnetic response of a discretely grounded circuit. This investigation is relevant to the study of man‐made structures such as metallic fences, grounded powerlines, and pipelines, all of which may fall into the class of discretely grounded conductors. The solution developed here is an extension to existing circuit theory and takes into account the self and mutual interaction of the circuit elements. It is possible to ignore these interactions at low frequencies where the grounding impedances dominate the effective impedance of the circuit. However, at frequencies where the electromagnetic skin depth is comparable to the length between adjacent grounding points, the effective impedance of the circuit is proportional to frequency, and the inductance of the circuit dominates its electromagnetic response. Within the quasi‐static limit (i.e., where displacement currents can be neglected) electromagnetic excitation by either horizontal electric or vertical magnetic dipoles produces a constant primary electric field at high frequencies (far‐field). Thus, the electric current in the discretely grounded circuit will always be inversely proportional to frequency for these types of sources. Horizontal magnetic dipole or vertical electric dipole sources generate primary electric fields that are proportional to the inverse square root of frequency in the high frequency limit of the quasi‐static domain, and thus the current in a circuit excited by such sources will decrease as the inverse of square root of frequency. The integral equation solution derived here can be used to investigate the influence from cultural conductors on actual electromagnetic surveys and also provides further insights into the current channeling response of surficial conductors.


Sign in / Sign up

Export Citation Format

Share Document