Prediction of sonic velocities in shale from porosity and clay fraction obtained from logs — A North Sea well case study

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. D1-D10 ◽  
Author(s):  
Marina Pervukhina ◽  
Pavel Golodoniuc ◽  
Boris Gurevich ◽  
Michael B. Clennell ◽  
Dave N. Dewhurst ◽  
...  

Prediction of sonic velocities in shales from well logs is important for seismic to log ties if the sonic log is absent for a shaly section, for pore pressure anomaly detection, and for data quality control. An anisotropic differential effective medium (DEM) was used to simulate elastic properties of shales from elastic properties and volume fractions of silt and wet clay (a hypothetical composite material that includes all clay minerals and water). Anisotropic elastic coefficients of the wet clay were assumed as a first-order approximation to be linearly dependent on wet clay porosity (WCP). Here, by WCP we mean a ratio of a pore volume occupied by water to a total volume of the wet clay. Effects of silt inclusions on elastic coefficients of shales were taken into account by using the anisotropic differential effective medium model. Silt inclusions were modeled as spherical quartz particles. Simulated elastic coefficients of shales were used to calculate compressional and shear velocities, and these were in a good agreement with the sonic velocities observed on a test data set from an offshore Mid-Norway well penetrating a 500-m vertical section of shale. To further study the elastic properties of wet clays, elastic coefficients calculated from compressional and sonic velocities measured in shales were inverted for vertical profiles of wet clay elastic coefficients. Analysis of these coefficients found that in the well considered, the increase in elastic coefficients of shales was controlled by the increase of silt fraction with depth. Elastic coefficients of wet clay found no increase with depth. The inverted elastic moduli of wet clay found much stronger correlation with WCP than do the moduli of shale. This confirmed the hypothesis that silt fraction is one of the key parameters for the modeling of elastic properties of shale.

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. WA43-WA57 ◽  
Author(s):  
Mathilde Adelinet ◽  
Jean-François Barthélémy ◽  
Elisabeth Bemer ◽  
Youri Hamon

Carbonate formations are highly heterogeneous, and the velocity-porosity relationships are controlled by various microstructural parameters, such as the types of pores and their distribution. Because diagenesis is responsible for important changes in the microstructure of carbonate rocks, we have extended the standard effective medium approach to model the impact of diagenesis on the carbonate elastic properties through a step-by-step effective medium modeling. Two different carbonate rocks deposited, respectively, in lacustrine and marine environments are considered in this study. The first key step is the characterization of the diagenesis, which affected the two studied carbonate sample sets. Effective medium models integrating all of the geologic information accessible from petrographic analysis are then built. The evolution of the microstructural parameters during diagenesis is thoroughly constrained based on an extensive experimental data set, including X-ray diffraction analysis, different porosimetry methods, and ultrasonic velocity measurements. A new theoretical approach including two sources of compliance is developed to model the specific behavior of carbonates. A compliant interface is introduced around the main carbonate grains to represent grain contacts and the different pore scales are taken into account through multiscale modeling. Finally, direct calculations with the model provide elastic wave velocities representative of the different diagenetic stages. An extrapolation to permeability evolution is also introduced. This approach allows the identification of the acoustic signature of specific diagenetic events, such as dolomitization, dissolution, or cementation, and the assessment of their impact on the elastic properties of carbonates.


2005 ◽  
Vol 53 (5) ◽  
pp. 733-754 ◽  
Author(s):  
M. Markov ◽  
V. Levine ◽  
A. Mousatov ◽  
E. Kazatchenko

2008 ◽  
Vol 75 (14) ◽  
pp. 4104-4116 ◽  
Author(s):  
Dan Su ◽  
Michael H. Santare ◽  
George A. Gazonas

2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


ICIPEG 2014 ◽  
2015 ◽  
pp. 313-321
Author(s):  
Ida Ayu Purnamasari ◽  
Wan Ismail Wan Yusoff ◽  
Chow Weng Sum

Sign in / Sign up

Export Citation Format

Share Document