elastic coefficients
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 3 (2) ◽  
pp. 103-116
Author(s):  
Ya. Sviatenko ◽  

The possibility of stabilizing an unstable uniform rotation in a resisting medium of a "sleeping" Lagrange gyroscope using a rotating second gyroscope and elastic spherical hinges is considered. The "sleeping" gyroscope rotates around a fixed point with an elastic recovery spherical hinge, and the second gyroscope is located above it. The gyroscopes are also connected by an elastic spherical restorative hinge and their rotation is supported by constant moments directed along their axes of rotation. It is shown that stabilization will be impossible in the absence of elasticity in the common joint and the coincidence of the center of mass of the second gyroscope with its center. With the help of the kinetic moment of the second gyroscope and the elasticity coefficients of the hinges, on the basis of an alternative approach, the stabilization conditions obtained in the form of a system of three inequalities and the conditions found on the elasticity coefficients at which the leading coefficients of these inequalities are positive. It is shown that stabilization will always be possible at a sufficiently large angular velocity of rotation of the second gyroscope under the assumption that the center of mass of the second gyroscope and the mechanical system are below the fixed point. The possibility of stabilizing the unstable uniform rotation of the "sleeping" Lagrange gyroscope using the second gyroscope and elastic spherical joints in the absence of dissipation is also considered. The "sleeping" gyroscope rotates at an angular velocity that does not meet the Mayevsky criterion. It is shown that stabilization will be impossible in the absence of elasticity in the common joint and the coincidence of the center of mass of the second gyroscope with its center. On the basis of the innovation approach, stabilization conditions were obtained in the form of a system of three irregularities using the kinetic moment of the second gyroscope and the elastic coefficients of the hinges. The condition for the angular momentum of the first gyroscope and the elastic coefficients at which the leading coefficients of these inequalities are positive are found. It is shown that if the condition for the angular momentum of the first gyroscope is fulfilled, stabilization will always be possible at a sufficiently large angular velocity of rotation of the second gyroscope, and in this case the center of mass of the second gyroscope can be located above the fixed point.


Pramana ◽  
2021 ◽  
Vol 95 (4) ◽  
Author(s):  
R F Fonkou ◽  
Patrick Louodop ◽  
P K Talla

2021 ◽  
Author(s):  
Samuel W Chung ◽  
Hyun-ho Ju

The theories in this article implies unique physical characteristics and formulated the governing equations. A uniformly valid shell theory which includes all the terms present in each of the asymptotic shell theories. The first approximation theories derived in this article represent the simplest possible shell theories for the corresponding length scales considered. Although twenty-one elastic coefficients are present in the original formulation of the problem, only six are appear in the first approximation theories.


2021 ◽  
Author(s):  
Samuel W Chung ◽  
Hyun-ho Ju

The theories in this article implies unique physical characteristics and formulated the governing equations. A uniformly valid shell theory which includes all the terms present in each of the asymptotic shell theories. The first approximation theories derived in this article represent the simplest possible shell theories for the corresponding length scales considered. Although twenty-one elastic coefficients are present in the original formulation of the problem, only six are appear in the first approximation theories.


2021 ◽  
Vol 56 (12) ◽  
pp. 7637-7658
Author(s):  
O. M. Horst ◽  
D. Schmitz ◽  
J. Schreuer ◽  
P. Git ◽  
H. Wang ◽  
...  

Abstract The present work shows that thermal expansion experiments can be used to measure the γʼ-solvus temperatures of four Ni-base single-crystal superalloys (SX), one with Re and three Re-free variants. In the case of CMSX-4, experimental results are in good agreement with numerical thermodynamic results obtained using ThermoCalc. For three experimental Re-free alloys, the experimental and calculated results are close. Transmission electron microscopy shows that the chemical compositions of the γ- and the γʼ-phases can be reasonably well predicted. We also use resonant ultrasound spectroscopy (RUS) to show how elastic coefficients depend on chemical composition and temperature. The results are discussed in the light of previous results reported in the literature. Areas in need of further work are highlighted. Graphical abstract


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1123
Author(s):  
Andrey Pereverzev ◽  
Tommy Sewell

The isothermal second-order elastic stiffness tensor and isotropic moduli of β-1,3,5,7- tetranitro-1,3,5,7-tetrazoctane (β-HMX) were calculated, using the P21/n space group convention, from molecular dynamics for hydrostatic pressures ranging from 10−4 to 30 GPa and temperatures ranging from 300 to 1100 K using a validated all-atom flexible-molecule force field. The elastic stiffness tensor components were calculated as derivatives of the Cauchy stress tensor components with respect to linear strain components. These derivatives were evaluated numerically by imposing small, prescribed finite strains on the equilibrated β-HMX crystal at a given pressure and temperature and using the equilibrium stress tensors of the strained cells to obtain the derivatives of stress with respect to strain. For a fixed temperature, the elastic coefficients increase substantially with increasing pressure, whereas, for a fixed pressure, the elastic coefficients decrease as temperature increases, in accordance with physical expectations. Comparisons to previous experimental and computational results are provided where possible.


Sign in / Sign up

Export Citation Format

Share Document