Source estimation for wavefield-reconstruction inversion

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. R345-R359 ◽  
Author(s):  
Zhilong Fang ◽  
Rongrong Wang ◽  
Felix J. Herrmann

Source estimation is essential for all wave-equation-based seismic inversions, including full-waveform inversion (FWI) and the recently proposed wavefield-reconstruction inversion (WRI). When the source estimation is inaccurate, errors will propagate into the predicted data and introduce additional data misfit. As a consequence, inversion results that minimize this data misfit may become erroneous. To mitigate the errors introduced by the incorrect and preestimated sources, an embedded procedure that updates sources along with medium parameters is necessary for the inversion. So far, such a procedure is still missing in the context of WRI, a method that is, in many situations, less prone to local minima related to so-called cycle skipping, compared with FWI through exact data fitting. Although WRI indeed helps to mitigate issues related to cycle skipping by extending the search space with wavefields as auxiliary variables, it relies on having access to the correct source functions. To remove the requirement of having the accurate source functions, we have developed a source-estimation technique specifically designed for WRI. To achieve this task, we consider the source functions as unknown variables and arrive at an objective function that depends on the medium parameters, wavefields, and source functions. During each iteration, we apply the so-called variable projection method to simultaneously project out the source functions and wavefields. After the projection, we obtain a reduced objective function that only depends on the medium parameters and invert for the unknown medium parameters by minimizing this reduced objective. Numerical experiments illustrate that this approach can produce accurate estimates of the unknown medium parameters without any prior information of the source functions.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 599
Author(s):  
Danilo Cruz ◽  
João de Araújo ◽  
Carlos da Costa ◽  
Carlos da Silva

Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.


2013 ◽  
Vol 56 (5) ◽  
pp. 685-703
Author(s):  
DONG Liang-Guo ◽  
CHI Ben-Xin ◽  
TAO Ji-Xia ◽  
LIU Yu-Zhu

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R553-R563
Author(s):  
Sagar Singh ◽  
Ilya Tsvankin ◽  
Ehsan Zabihi Naeini

The nonlinearity of full-waveform inversion (FWI) and parameter trade-offs can prevent convergence toward the actual model, especially for elastic anisotropic media. The problems with parameter updating become particularly severe if ultra-low-frequency seismic data are unavailable, and the initial model is not sufficiently accurate. We introduce a robust way to constrain the inversion workflow using borehole information obtained from well logs. These constraints are included in the form of rock-physics relationships for different geologic facies (e.g., shale, sand, salt, and limestone). We develop a multiscale FWI algorithm for transversely isotropic media with a vertical symmetry axis (VTI media) that incorporates facies information through a regularization term in the objective function. That term is updated during the inversion by using the models obtained at the previous inversion stage. To account for lateral heterogeneity between sparse borehole locations, we use an image-guided smoothing algorithm. Numerical testing for structurally complex anisotropic media demonstrates that the facies-based constraints may ensure the convergence of the objective function towards the global minimum in the absence of ultra-low-frequency data and for simple (even 1D) initial models. We test the algorithm on clean data and on surface records contaminated by Gaussian noise. The algorithm also produces a high-resolution facies model, which should be instrumental in reservoir characterization.


2018 ◽  
Vol 37 (2) ◽  
pp. 142-145 ◽  
Author(s):  
Philipp Witte ◽  
Mathias Louboutin ◽  
Keegan Lensink ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
...  

This tutorial is the third part of a full-waveform inversion (FWI) tutorial series with a step-by-step walkthrough of setting up forward and adjoint wave equations and building a basic FWI inversion framework. For discretizing and solving wave equations, we use Devito ( http://www.opesci.org/devito-public ), a Python-based domain-specific language for automated generation of finite-difference code ( Lange et al., 2016 ). The first two parts of this tutorial ( Louboutin et al., 2017 , 2018 ) demonstrated how to solve the acoustic wave equation for modeling seismic shot records and how to compute the gradient of the FWI objective function using the adjoint-state method. With these two key ingredients, we will now build an inversion framework that can be used to minimize the FWI least-squares objective function.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


Sign in / Sign up

Export Citation Format

Share Document