Tackling cycle skipping in full-waveform inversion with intermediate data

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. R55-R61 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Yunseok Choi

In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R201-R211 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


2016 ◽  
Vol 4 (4) ◽  
pp. SU17-SU24 ◽  
Author(s):  
Vanessa Goh ◽  
Kjetil Halleland ◽  
René-Édouard Plessix ◽  
Alexandre Stopin

Reducing velocity inaccuracy in complex settings is of paramount importance for limiting structural uncertainties, therefore helping the geologic interpretation and reservoir characterization. Shallow velocity variations due, for instance, to gas accumulations or carbonate reefs, are a common issue offshore Malaysia. These velocity variations are difficult to image through standard reflection-based velocity model building. We have applied full-waveform inversion (FWI) to better characterize the upper part of the earth model for a shallow-water field, located in the Central Luconia Basin offshore Sarawak. We have inverted a narrow-azimuth data set with a maximum inline offset of 4.4 km. Thanks to dedicated broadband preprocessing of the data set, we could enhance the signal-to-noise ratio in the 2.5–10 Hz frequency band. We then applied a multiparameter FWI to estimate the background normal moveout velocity and the [Formula: see text]-parameter. Full-waveform inversion together with broadband data processing has helped to better define the faults and resolve the thin layers in the shallow clastic section. The improvements in the velocity model brought by FWI lead to an improved image of the structural closure and flanks. Moreover, the increased velocity resolution helps in distinguishing between two different geologic interpretations.


2019 ◽  
Vol 38 (3) ◽  
pp. 220-225
Author(s):  
Laurence Letki ◽  
Mike Saunders ◽  
Monica Hoppe ◽  
Milos Cvetkovic ◽  
Lewis Goss ◽  
...  

The Argentina Austral Malvinas survey comprises 13,784 km of 2D data extending from the shelf to the border with the Falkland Islands. The survey was acquired using a 12,000 m streamer and continuous recording technology and was processed through a comprehensive broadband prestack depth migration workflow focused on producing a high-resolution, high-fidelity data set. Source- and receiver-side deghosting to maximize the bandwidth of the data was an essential ingredient in the preprocessing. Following the broadband processing sequence, a depth-imaging workflow was implemented, with the initial model built using a time tomography approach. Several passes of anisotropic reflection tomography provided a significant improvement in the velocity model prior to full-waveform inversion (FWI). Using long offsets, FWI made use of additional information contained in the recorded wavefield, including the refracted and diving wave energy. FWI resolved more detailed velocity variations both in the shallow and deeper section and culminated in an improved seismic image.


Geophysics ◽  
2020 ◽  
pp. 1-50
Author(s):  
Yulang Wu ◽  
George A. McMechan

Conventional full waveform inversion (FWI) updates a velocity model by minimizing the data residuals between predicted and observed data, at the receiver positions. We propose a new full waveform inversion to update the velocity model by minimizing virtual source artifacts, at the receiver positions, in the source domain (SFWI). Virtual source artifacts are created by replacing the propagating source wavefield by the forward-time observed data at the receiver positions, as a data-residual constraint. Therefore, no matter whether the velocity model is correct or not, the data residuals, at the receiver positions, are always forced to be zero. If the velocity model is correct, this data-residual constraint has no effect on the wavefield, since the predicted data is the same as the observed data. However, if the estimated velocity model is incorrect, the mismatch between the replaced forward-time observed data and the incorrect predicted upgoing waves (e.g., reflected waves) at the receiver positions, will produce downgoing artifact waves. Thus, the data-residual constraint behaves as a virtual source to create artifact wavefields. By minimizing the virtual source artifacts (equivalent to producing the artifact wavefield), the velocity model can be iteratively updated toward the true velocity model. Similar to conventional FWI, SFWI can be implemented in either the frequency or the time domain, which is unlike previous source-domain solutions, which have to be implemented only in the frequency domain, to solve the normal equations. SFWI does more over-fitting of noisy observed data than conventional FWI does, because noise is amplified by the differential operators when calculating the virtual source artifacts. Tests on synthetic data show that the SFWI inverts for the velocity model more accurately than conventional FWI for noise-free or low-noise data.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R37-R46 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

Full waveform inversion is a method used to recover subsurface parameters, and it requires heavy computational resources. We present a cyclic shot subsampling method to make the full waveform inversion efficient while maintaining the quality of the inversion results. The cyclic method subsamples the shots at a regular interval and changes the shot subset at each iteration step. Using this method, we can suppress the aliasing noise present in regular-interval subsampling. We compared the cyclic method with divide-and-conquer, random, and random-in-each-subgroup subsampling methods using the Laplace-domain full waveform inversion. We found examples of a 2D marine field data set from the Gulf of Mexico and a 3D synthetic salt velocity model. In the inversion examples using the subsampling methods, we could reduce the computation time and obtain results comparable to that without a subsampling technique. The cyclic method and two random subsampling methods yielded similar results; however, the cyclic method generated the best results, especially when the number of shot subsamples was small, as expected. We also examined the effect of subsample updating frequency. The updating frequency does not have a significant effect on the results when the number of subsamples is large. In contrast, frequent subsample updating becomes important when the number of subsamples is small. The random-in-each-subgroup scheme showed the best results if we did not update the subsamples frequently, while the cyclic method suffers from aliasing. The results suggested that the cyclic subsampling scheme can be an alternative to the random schemes and the distributed subsampling schemes with a frequently changing subset are better than lumped subsampling schemes.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R59-R80 ◽  
Author(s):  
Michael Warner ◽  
Andrew Ratcliffe ◽  
Tenice Nangoo ◽  
Joanna Morgan ◽  
Adrian Umpleby ◽  
...  

We have developed and implemented a robust and practical scheme for anisotropic 3D acoustic full-waveform inversion (FWI). We demonstrate this scheme on a field data set, applying it to a 4C ocean-bottom survey over the Tommeliten Alpha field in the North Sea. This shallow-water data set provides good azimuthal coverage to offsets of 7 km, with reduced coverage to a maximum offset of about 11 km. The reservoir lies at the crest of a high-velocity antiformal chalk section, overlain by about 3000 m of clastics within which a low-velocity gas cloud produces a seismic obscured area. We inverted only the hydrophone data, and we retained free-surface multiples and ghosts within the field data. We invert in six narrow frequency bands, in the range 3 to 6.5 Hz. At each iteration, we selected only a subset of sources, using a different subset at each iteration; this strategy is more efficient than inverting all the data every iteration. Our starting velocity model was obtained using standard PSDM model building including anisotropic reflection tomography, and contained epsilon values as high as 20%. The final FWI velocity model shows a network of shallow high-velocity channels that match similar features in the reflection data. Deeper in the section, the FWI velocity model reveals a sharper and more-intense low-velocity region associated with the gas cloud in which low-velocity fingers match the location of gas-filled faults visible in the reflection data. The resulting velocity model provides a better match to well logs, and better flattens common-image gathers, than does the starting model. Reverse-time migration, using the FWI velocity model, provides significant uplift to the migrated image, simplifying the planform of the reservoir section at depth. The workflows, inversion strategy, and algorithms that we have used have broad application to invert a wide-range of analogous data sets.


2017 ◽  
Vol 5 (3) ◽  
pp. SO21-SO30 ◽  
Author(s):  
Shihang Feng ◽  
Gerard T. Schuster

We have developed a tutorial for skeletonized inversion of pseudo-acoustic anisotropic vertical symmetry axis (VTI) data. We first invert for the anisotropic models using wave-equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared with full-waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.


2018 ◽  
Vol 35 (4) ◽  
pp. 247
Author(s):  
Rafael Abreu Cristo ◽  
Milton Porsani

ABSTRACT. The FWI multiscale approach in data domain produces better results because the problem gets closer to the overall minimum avoiding the local minima. The method works in different scales, avoiding the initial velocity model choice as well as the cycle skipping. Regarding to multiscale approach, it was done choosing frequencies band performed by Wiener filter and a SVD filter trace by trace both in data domain. The trace by trace SVD filter works taking each trace of the gradient and assembles on the shifted matrix traces and do the decomposition from low to high frequency. In addition this multiscale approach in data domain was compared to another multiscale approach using damping filters on the objective function (MDFOF). Due to the problem of geometrical spreading, during the propagation of the wave field, the deeper regions of the model are not well illuminated, hence the preconditioning of the objective function gradient was done in order to eliminate this problem and allow the deeper regions to be compared. Keywords: SVD filter; Full waveform inversion; Gradient preconditioning; Pseudo Hessian diagonal. RESUMO. A abordagem multiescala no problema da FWI, produz melhores resultados pois o problema consegue convergir para o mínimo global, evitando o problema do mínimo local. O método funciona em diferentes escalas, evitando o problema da escolha no modelo inicial de velocidade bem como o problema de salto de ciclo. Em relação à abordagem multiescala, o mesmo foi realizado escolhendo bandas de frequências usando o filtro de Wiener e o filtro SVD traço a traço. O filtro SVD traço a traço funciona tomando cada traço do gradiente e da matriz de traços deslocados a faz a decomposição das baixas às altas frequências. Além dessa, abordagem multiescala no domínio do dado, outra abordagem multiescala usando filtros atenuantes foi comparada com a abordagem multiescala no domínio do dado. Devido ao problema de divergência esférica, durante a propagação da onda, as regiões mais profundas do modelo não são corretamente imageadas, portanto faz-se necessário o precondicionamento do gradiente foi feito com intuito de eliminar esse problema e permitir a comparação das duas abordagens nas regiões mais profundas do modelo. Palavras-chave: Filtro SVD; Inversion complete da forma de onda; Precondicionamento do gradiente; Diagonal da Pseudo Hessiana.


Sign in / Sign up

Export Citation Format

Share Document