scholarly journals ML-descent: An optimization algorithm for full-waveform inversion using machine learning

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R477-R492 ◽  
Author(s):  
Bingbing Sun ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) is a nonlinear optimization problem, and a typical optimization algorithm such as the nonlinear conjugate gradient or limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) would iteratively update the model mainly along the gradient-descent direction of the misfit function or a slight modification of it. Based on the concept of meta-learning, rather than using a hand-designed optimization algorithm, we have trained the machine (represented by a neural network) to learn an optimization algorithm, entitled the “ML-descent,” and apply it in FWI. Using a recurrent neural network (RNN), we use the gradient of the misfit function as the input, and the hidden states in the RNN incorporate the history information of the gradient similar to an LBFGS algorithm. However, unlike the fixed form of the LBFGS algorithm, the machine-learning (ML) version evolves in response to the gradient. The loss function for training is formulated as a weighted summation of the L2 norm of the data residuals in the original inverse problem. As with any well-defined nonlinear inverse problem, the optimization can be locally approximated by a linear convex problem; thus, to accelerate the training, we train the neural network by minimizing randomly generated quadratic functions instead of performing time-consuming FWIs. To further improve the accuracy and robustness, we use a variational autoencoder that projects and represents the model in latent space. We use the Marmousi and the overthrust examples to demonstrate that the ML-descent method shows faster convergence and outperforms conventional optimization algorithms. The energy in the deeper part of the models can be recovered by the ML-descent even when the pseudoinverse of the Hessian is not incorporated in the FWI update.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 599
Author(s):  
Danilo Cruz ◽  
João de Araújo ◽  
Carlos da Costa ◽  
Carlos da Silva

Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2916 ◽  
Author(s):  
Jingwei Zhang ◽  
Shengbo Ye ◽  
Li Yi ◽  
Yuquan Lin ◽  
Hai Liu ◽  
...  

Ground penetrating radar (GPR), as a nondestructive testing tool, is suitable for estimating the thickness and permittivity of layers within the pavement. However, it would become problematic when the layer is thin with respect to the probing pulse width, in which case overlapping between the reflected pulses occurs. In order to deal with this problem, a hybrid method based on multilayer perceptrons (MLPs) and a local optimization algorithm is proposed. This method can be divided into two stages. In the first stage, the MLPs roughly estimate the thickness and the permittivity of the GPR signal. In the second stage, these roughly estimated values are used as the initial solution of the full-waveform inversion algorithm. The hybrid method and the conventional global optimization algorithm are respectively used to perform the full-waveform inversion of the simulated GPR data. Under the same inversion precision, the objective function needs to be calculated for 450 times and 30 times for the conventional method and the hybrid method, respectively. The hybrid method is also applied to a measured data, and the thickness estimation error is 1.2 mm. The results show the high efficiency and accuracy of such hybrid method to resolve the problem of estimating the thickness and permittivity of a “thin layer”.


Geosciences ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Marwan Charara ◽  
Christophe Barnes

Full-waveform inversion for borehole seismic data is an ill-posed problem and constraining the problem is crucial. Constraints can be imposed on the data and model space through covariance matrices. Usually, they are set to a diagonal matrix. For the data space, signal polarization information can be used to evaluate the data uncertainties. The inversion forces the synthetic data to fit the polarization of observed data. A synthetic inversion for a 2D-2C data estimating a 1D elastic model shows a clear improvement, especially at the level of the receivers. For the model space, horizontal and vertical spatial correlations using a Laplace distribution can be used to fill the model space covariance matrix. This approach reduces the degree of freedom of the inverse problem, which can be quantitatively evaluated. Strong horizontal spatial correlation distances favor a tabular geological model whenever it does not contradict the data. The relaxation of the spatial correlation distances from large to small during the iterative inversion process allows the recovery of geological objects of the same size, which regularizes the inverse problem. Synthetic constrained and unconstrained inversions for 2D-2C crosswell data show the clear improvement of the inversion results when constraints are used.


Sign in / Sign up

Export Citation Format

Share Document