Recurrent neural network representation of the inelastic wave equation and full‐waveform inversion without local minima

1992 ◽  
Author(s):  
Paul Michaels ◽  
R. B. Smith
Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. R223-R233 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale

In reflection seismology, full-waveform inversion (FWI) can generate high-wavenumber subsurface velocity models but often suffers from an objective function with local minima caused mainly by the absence of low frequencies in seismograms. These local minima cause cycle skipping when the low-wavenumber component in the initial velocity model for FWI is far from the true model. To avoid cycle skipping, we discovered a new wave-equation reflection traveltime inversion (WERTI) to update the low-wavenumber component of the velocity model, while using FWI to only update high-wavenumber details of the model. We implemented the low- and high-wavenumber inversions in an alternating way. In WERTI, we used dynamic image warping (DIW) to estimate the time shifts between recorded data and synthetic data. When compared with correlation-based techniques often used in traveltime estimation, DIW can avoid cycle skipping and estimate the time shifts accurately, even when shifts vary rapidly. Hence, by minimizing traveltime shifts estimated by dynamic warping, WERTI reduces errors in reflection traveltime inversion. Then, conventional FWI uses the low-wavenumber component estimated by WERTI as a new initial model and thereby refines the model with high-wavenumber details. The alternating combination of WERTI and FWI mitigates the velocity-depth ambiguity and can recover subsurface velocities using only high-frequency reflection data.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Guangchi Xing ◽  
Tieyuan Zhu

We formulate the Fréchet kernel computation using the adjoint-state method based on a fractional viscoacoustic wave equation. We first numerically prove that both the 1/2- and the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we show that the adjoint wave propagator preserves the dispersion and compensates the amplitude, while the time-reversed adjoint wave propagator behaves identically as the forward propagator with the same dispersion and dissipation characters. Without introducing rheological mechanisms, this formulation adopts an explicit Q parameterization, which avoids the implicit Q in the conventional viscoacoustic/viscoelastic full waveform inversion ( Q-FWI). In addition, because of the decoupling of operators in the wave equation, the viscoacoustic Fréchet kernel is separated into three distinct contributions with clear physical meanings: lossless propagation, dispersion, and dissipation. We find that the lossless propagation kernel dominates the velocity kernel, while the dissipation kernel dominates the attenuation kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-difference method, we conduct a numerical example to demonstrate the capability of the kernels to characterize both velocity and attenuation anomalies. The kernels of different misfit measurements are presented to investigate their different sensitivities. Our results suggest that rather than the traveltime, the amplitude and the waveform kernels are more suitable to capture attenuation anomalies. These kernels lay the foundation for the multiparameter inversion with the fractional formulation, and the decoupled nature of them promotes our understanding of the significance of different physical processes in the Q-FWI.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R477-R492 ◽  
Author(s):  
Bingbing Sun ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) is a nonlinear optimization problem, and a typical optimization algorithm such as the nonlinear conjugate gradient or limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) would iteratively update the model mainly along the gradient-descent direction of the misfit function or a slight modification of it. Based on the concept of meta-learning, rather than using a hand-designed optimization algorithm, we have trained the machine (represented by a neural network) to learn an optimization algorithm, entitled the “ML-descent,” and apply it in FWI. Using a recurrent neural network (RNN), we use the gradient of the misfit function as the input, and the hidden states in the RNN incorporate the history information of the gradient similar to an LBFGS algorithm. However, unlike the fixed form of the LBFGS algorithm, the machine-learning (ML) version evolves in response to the gradient. The loss function for training is formulated as a weighted summation of the L2 norm of the data residuals in the original inverse problem. As with any well-defined nonlinear inverse problem, the optimization can be locally approximated by a linear convex problem; thus, to accelerate the training, we train the neural network by minimizing randomly generated quadratic functions instead of performing time-consuming FWIs. To further improve the accuracy and robustness, we use a variational autoencoder that projects and represents the model in latent space. We use the Marmousi and the overthrust examples to demonstrate that the ML-descent method shows faster convergence and outperforms conventional optimization algorithms. The energy in the deeper part of the models can be recovered by the ML-descent even when the pseudoinverse of the Hessian is not incorporated in the FWI update.


Sign in / Sign up

Export Citation Format

Share Document