A new decoupling and elastic propagator for efficient elastic reverse time migration

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. A31-A36
Author(s):  
Qizhen Du ◽  
Qiang Zhao ◽  
Qingqing Li ◽  
Liyun Fu ◽  
Qifeng Sun

Methods to decompose the elastic wavefield into compressional wave (P-wave) and shear wave (S-wave) components in heterogeneous media without wavefield distortions or energy leakage are the key issues in elastic imaging and inversion. We have introduced a decoupled P- and S-wave propagator to form an efficient elastic reverse time migration (RTM) framework, without assuming homogeneous Lamé parameters. Also, no wave-mode conversions occur using the proposed propagator in the presence of strong heterogeneities, which avoids the potential imaging artifacts caused by wave-mode conversions in the receiver-side backward extrapolation. In the proposed elastic RTM framework, the source-side forward wavefield is simulated with a P-wave propagator. The receiver-side wavefield is back extrapolated with the proposed propagator, using the recorded multicomponent seismic data as input. Compared to the conventional elastic RTM, the proposed framework reduces the computational complexity while preserving the imaging accuracy. We have determined its accuracy and efficiency using two synthetic examples.

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R149-R159 ◽  
Author(s):  
Xinfa Zhu ◽  
George A. McMechan

Near- and postcritical (wide-angle) reflections provide the potential for velocity and density inversion because of their large amplitudes and phase-shifted waveforms. We tested using phase variation with angle (PVA) data in addition to, or instead of, amplitude variation with angle (AVA) data for elastic inversion. Accurate PVA test data were generated using the reflectivity method. Two other forward modeling methods were also investigated, including plane-wave and spherical-wave reflection coefficients. For a two half-space model, linearized least squares was used to invert PVA and AVA data for the P-wave velocity, S-wave velocity, and the density of the lower space and the S-wave velocity of the upper space. Inversion tests showed the feasibility and robustness of PVA inversion. A reverse-time migration test demonstrated better preservation of PVA information than AVA information during wavefield propagation through a layered overburden. Phases of deeper reflections were less affected than amplitudes by the transmission losses, which makes the results of PVA inversion more accurate than AVA inversion in multilayered media. PVA brings useful information to the elastic inversion of wide-angle reflections.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C295-C307 ◽  
Author(s):  
Pengfei Yu ◽  
Jianhua Geng ◽  
Chenlong Wang

Quasi-P (qP)-wavefield separation is a crucial step for elastic P-wave imaging in anisotropic media. It is, however, notoriously challenging to quickly and accurately obtain separated qP-wavefields. Based on the concepts of the trace of the stress tensor and the pressure fields defined in isotropic media, we have developed a new method to rapidly separate the qP-wave in a transversely isotropic medium with a vertical symmetry axis (VTI) by synthesized pressure from ocean-bottom seismic (OBS) data as a preprocessing step for elastic reverse time migration (ERTM). Another key aspect of OBS data elastic wave imaging is receiver-side 4C records back extrapolation. Recent studies have revealed that receiver-side tensorial extrapolation in isotropic media with ocean-bottom 4C records can sufficiently suppress nonphysical waves produced during receiver-side reverse time wavefield extrapolation. Similarly, the receiver-side 4C records tensorial extrapolation was extended to ERTM in VTI media in our studies. Combining a separated qP-wave by synthesizing pressure and receiver-side wavefield reverse time tensorial extrapolation with the crosscorrelation imaging condition, we have developed a robust, fast, flexible, and elastic imaging quality improved method in VTI media for OBS data.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S113-S125 ◽  
Author(s):  
Xiyan Zhou ◽  
Xu Chang ◽  
Yibo Wang ◽  
Zhenxing Yao

To eliminate crosstalk within the imaging results of elastic reverse time migration (ERTM), we can separate the coupled P- and S-waves from the forward source wavefield and the backpropagated receiver wavefield. The P- and S-wave decoupling method retains the original phase, amplitude, and physical meaning in the separated wavefields. Thus, it is a vital wavefield separation method in ERTM. However, because these decomposed wavefields are vectors, we could consider how to retrieve scalar images that reveal the real reflectivity of the subsurface. For this purpose, we derive a scalar P-wave equation from the velocity-stress relationship for PP imaging. The phase and amplitude of this scalar P-wave are consistent with the scalarized P-wave. Therefore, this scalar P-wave can be exploited to perform PP imaging directly, with the imaging result retaining the amplitude characteristics. For PS imaging, it is difficult to calculate a dynamic preserved scalar S-wave. However, we have developed a scalar PS imaging method that divides the PS image into energy and sign components according to the geometric relationship between the wavefield vibration and propagation directions. The energy is calculated through the amplitude crosscorrelation of the forward P-wave and backpropagated S-wave from the receivers. The sign is obtained from the dot product of the forward P-wave vector and the backpropagated S-wave vector. These PP and PS imaging methods are suitable for 2D and 3D isotropic media and maintain the correct amplitude information while eliminating polarity-reversal phenomena. Several numerical models are used to verify the robustness and effectiveness of our method.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S57-S79 ◽  
Author(s):  
Chen Tang ◽  
George A. McMechan

Elastic reverse time migration (E-RTM) has limitations when the migration velocities contain strong contrasts. First, the traditional scheme of P/S-wave mode separation is based on Helmholtz’s equations, which ignore the conversion between P- and S-waves at the current separation time. Thus, it contains an implicit assumption of the constant shear modulus and requires smoothing the heterogeneous model to approximately satisfy a locally constant condition. Second, the vector-based imaging condition needs to use the reflection-image normal, and it also cannot give the correct polarity of the PP image in all possible conditions. Third, the angle-domain common-image gathers (ADCIGs) calculated using the Poynting vectors (PVs) do not consider the wave interferences that happen at each reflector. Therefore, smooth models are often used for E-RTM. We relax this condition by proposing an improved data flow that involves three new contributions. The first contribution is an improved system of P/S-wave mode separation that considers the converted wave generated at the current time, and thus it does not require the constant-shear-modulus assumption. The second contribution is the new elastic imaging conditions based on multidirectional vectors; they can give the correct image polarity in all possible conditions without knowledge of the reflection-image normal. The third contribution is two methods to calculate multidirectional propagation vectors (PRVs) for RTM images and ADCIGs: One is the elastic multidirectional PV, and the other uses the sign of wavenumber-over-frequency ([Formula: see text]) ratio obtained from an amplitude-preserved approximate-propagation-angle-based wavefield decomposition to convert the particle velocities into multidirectional PRVs. The robustness of the improved data flow is determined by several 2D numerical examples. Extension of the schemes into 3D and amplitude-preserved imaging conditions is also possible.


2012 ◽  
Vol 472-475 ◽  
pp. 1455-1459
Author(s):  
Nai Chuan Guo ◽  
Shang Xu Wang ◽  
Hong Wei Guo

In order to study the wavefield response of heterogeneous structure in seismic section, firstly, we have got the 2-D P-wave data for two kinds of heterogeneous structure in the physical model of a 3-D heterogeneous sand layer. Then, we choose several typical single shot seismic records and minimum offset gathers for wavefield analysis. Finally, we show two images generated by using reverse time migration (RTM) on the recording data. Experimental results indicate that, heterogeneous structure’s information is included in every single shot record; each heterogeneity forms a diffractor whose diffraction response, which affects the imaging of the interface between the heterogeneous region and the homogeneous region, is especially obvious in the minimum offset gathers; diffraction wave could be eliminated by RTM imaging, which could reflect the position of heterogeneous structure in reality; the differences of the wavefield response of the two kinds of heterogeneous structures are mainly reflected in the divergences of the events’ scale and power of the heterogeneities.


2019 ◽  
Vol 177 (2) ◽  
pp. 961-975
Author(s):  
Pengfei Yu ◽  
Jianhua Geng

Abstract In conventional vector-wave-based elastic reverse-time migration, there are two types of artifacts: low-frequency artifacts and nonphysical artifacts. Vector-decomposition-based acoustic–elastic coupled equations are effective in suppressing nonphysical artifacts by using ocean bottom four component (4C) seismic data for receiver-side tensorial extrapolation. We introduce up/down-going wave separation into the vector-decomposition-based acoustic–elastic coupled equations, and deduce novel analytic acoustic–elastic coupled equations. With these novel equations, we can obtain the source-side and receiver-side up-going and down-going P/S-wave vectors in wavefield propagation, and effectively suppress both of the artifacts in vector-wave-based elastic reverse-time migration by combining receiver-side tensorial extrapolation and the decomposed vector-wave-based imaging conditions. Examples using synthetic data and field data are presented to illustrate the validity and effectiveness of our method.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S271-S291 ◽  
Author(s):  
Bingluo Gu ◽  
Zhenchun Li ◽  
Peng Yang ◽  
Wencai Xu ◽  
Jianguang Han

We have developed the theory and synthetic tests of elastic least-squares reverse time migration (ELSRTM). In this method, a least-squares reverse time migration algorithm is used to image multicomponent seismic data based on the first-order elastic velocity-stress wave equation, in which the linearized elastic modeling equations are used for forward modeling and its adjoint equations are derived based on the adjoint-state method for back propagating the data residuals. Also, we have developed another ELSRTM scheme based on the wavefield separation technique, in which the P-wave image is obtained using P-wave forward and adjoint wavefields and the S-wave image is obtained using P-wave forward and S-wave adjoint wavefields. In this way, the crosstalk artifacts can be minimized to a significant extent. In general, seismic data inevitably contain noise. We apply the hybrid [Formula: see text] misfit function to the ELSRTM algorithm to improve the robustness of our ELSRTM to noise. Numerical tests on synthetic data reveal that our ELSRTM, when compared with elastic reverse time migration, can produce images with higher spatial resolution, more-balanced amplitudes, and fewer artifacts. Moreover, the hybrid [Formula: see text] misfit function makes the ELSRTM more robust than the [Formula: see text] misfit function in the presence of noise.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. S279-S297 ◽  
Author(s):  
Bingluo Gu ◽  
Zhenchun Li ◽  
Jianguang Han

Elastic least-squares reverse time migration (ELSRTM) has the potential to provide improved subsurface reflectivity estimation. Compared with elastic RTM (ERTM), ELSRTM can produce images with higher spatial resolution, more balanced amplitudes, and fewer artifacts. However, the crosstalk between P- and S-waves can significantly degrade the imaging quality of ELSRTM. We have developed an ELSRTM method to suppress the crosstalk artifacts. This method includes three crucial points. The first is that the forward and backward wavefields are extrapolated based on the separated elastic velocity-stress equation of P- and S-waves. The second is that the separated vector P- and S-wave residuals are migrated to form reflectivity images of Lamé constants [Formula: see text] and [Formula: see text] independently. The third is that the reflectivity images of [Formula: see text] and [Formula: see text] are obtained by the vector P-wave wavefields achieved in the backward extrapolation of the separated vector P-wave residuals and the vector S-wave wavefields achieved in the backward extrapolation of the separated vector S-wave residuals, respectively. Numerical tests with synthetic data demonstrate that our ELSRTM method can produce images free of crosstalk artifacts. Compared with ELSRTM based on the coupled wavefields, our ELSRTM method has better convergence and higher accuracy.


2014 ◽  
Vol 2 (4) ◽  
pp. SL1-SL20 ◽  
Author(s):  
Ian F. Jones ◽  
Ian Davison

Seismic imaging of evaporite bodies is notoriously difficult due to the complex shapes of steeply dipping flanks, adjacent overburden strata, and the usually strong acoustic impedance and velocity contrasts at the sediment-evaporite interface. We consider the geology of salt bodies and the problems and pitfalls associated with their imaging such as complex raypaths, seismic velocity anisotropy, P- and S-wave mode conversions, and reflected refractions. We also review recent developments in seismic acquisition and processing, which have led to significant improvements in image quality and in particular, reverse time migration. We tried to call attention to the form, nature, and consequences of these issues for meaningful interpretation of the resulting images.


Sign in / Sign up

Export Citation Format

Share Document