Microseismic moment-tensor inversion and sensitivity analysis in VTI media
Through the study of microseismic focal mechanisms, information such as fracture orientation, event magnitude, and in-situ stress status can be quantitatively obtained, thus, providing a reliable basis for unconventional oil and gas exploration. Most source inversion methods assume that the medium is isotropic. However, hydraulic fracturing is usually conducted in sedimentary rocks, which often exhibit strong anisotropy. Neglecting this anisotropy may cause errors in focal mechanism inversion results. We propose a microseismic focal mechanism inversion method that considers velocity anisotropy in a vertically transverse isotropic (VTI) medium. To generate synthetic data, we adopt the moment-tensor model to represent microearthquake sources. We use a staggered-grid finite-difference (SGFD) method to calculate synthetic seismograms in anisotropic media. We perform seismic moment-tensor (SMT) inversion with only P-waves by matching synthetic and observed waveforms. Both synthetic and field datasets are used to test the inversion method. For the field dataset, we investigate the inversion stability using randomly selected partial datasets in the calculation. We pay special attention to analyze the sensitivity of the inversion. We test and evaluate the impact of noise in the data and errors in the model parameters ( VP0, ε, and δ) on the SMT inversion using synthetic datasets. The results indicate that for a surface acquisition system, the proposed method can tolerate moderate noise in the data, and deviations in the anisotropy parameters can cause errors in the SMT inversion, especially for dip-slip events and the inverted percentages of non-double-couple components. According to our study, including anisotropy in the model is important to obtain reliable non-double-couple components of moment tensors for hydraulic fracturing induced microearthquakes.