Fractured basement imaging using random-space-shift reverse-time-migration: a vertical seismic profile survey in Bohai Bay Basin, China

Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Jingjing Zong ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Yunyue Elita Li ◽  
Yukai Wo ◽  
...  

Fractured basements not only are potential reservoirs for hydrocarbon resources but also provide significant storage space for carbon dioxide ( CO2) sequestration and radioactive waste disposal. However, fractured basements are challenging to seismic imaging methods due to the complexities in their fault and fracture networks, strong heterogeneity, highly variable structural dip, and strong impedance contrasts between the basement rocks and the surrounding sediments. We present a case where a walk-away vertical seismic profiling (VSP) survey was conducted at a fractured-basement play located in Bohai Bay Basin, China, to improve the resolution compared to a pre-existing surface seismic profile. Using the advanced random-space-shift (RSS) reverse-time-migration (RTM), we obtain a high-resolution image with a clear delineation of the highly faulted dipping basement. From numerical and field examples, we show that the application of the RSS-RTM improves the final image by mitigating unavoidable errors in the migration velocity model which would otherwise result in an unfocused image using the conventional RTM approach. In addition, we demonstrate the importance of proper wavefield separation using three-component (3C) recordings, which is the key to ensuring the quality of the final image. With an optimized VSP imaging workflow, we provide an enhanced image for the fractured basement to support the geologic interpretations and development decisions.

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. S71-S82 ◽  
Author(s):  
Chris Willacy ◽  
Maksym Kryvohuz

The imaging of steep salt boundaries has received much attention with the advent of improved wider azimuth acquisition designs and advanced imaging techniques such as reverse time migration (RTM), for example. However, despite these advancements in capability, there are cases in which the salt boundary is either poorly illuminated or completely absent in the migrated image. To provide a solution to this problem, we have developed two RTM methods for imaging salt boundaries, which use transmitted wavefields. In the first technique, downgoing waves, typically recorded in walkaway vertical seismic profile surveys, are used to image the salt flank via the generation of aplanatic isochrones. This image can be generated in the absence of an explicit interpretation of the salt flank using dual migration velocity models, as demonstrated on a 3D walkaway field data set from the Gulf of Mexico. In the second technique, we extend the basic theory to include imaging of upgoing source wavefields, which are transmitted at the base salt from below, as acquired by a surface acquisition geometry. This technique has similarities to the prism-imaging method, yet it uses transmitted instead of reflected waves at the salt boundary. Downgoing and upgoing methods are shown to satisfactorily generate an image of the salt flank; however, transmission imaging can create artifacts if reflection arrivals are included in the migration or the acquisition geometry is limited in extent. Increased wavelet stretch is also observed due to the higher transmission coefficient. An important benefit of these methods is that transmission imaging produces an opposite depth shift to errors in the velocity model compared with imaging of reflections. When combined with conventional seismic reflection surveys, this behavior can be used to provide a constraint on the accuracy of the salt and/or subsalt velocities.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


2021 ◽  
pp. 104469
Author(s):  
A. Maul ◽  
A. Bulcão ◽  
R.M. Dias ◽  
B. Pereira-Dias ◽  
L. Teixeira ◽  
...  

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. S65-S77 ◽  
Author(s):  
Hu Jin ◽  
George A. McMechan ◽  
Bao Nguyen

We have developed a new method of extracting angle-domain common-image gathers (ADCIGs) from prestack reverse time migration (RTM) that has minimal intermediate storage requirements. To include multipathing, we applied an imaging condition for prestack RTM that uses multiple excitation image times. Instead of saving the full-source snapshots at all time steps, we picked and saved only a few of the highest amplitude arrivals, and their corresponding excitation times, of the source wavefield at each grid point, and we crosscorrelated with the receiver wavefield. When extracting the ADCIGs from RTM, we calculated the source propagation direction from the gradient of the excitation times. The result was that the source time snapshots do not have to be saved or reconstructed during RTM or while extracting ADCIGs. We calculated the receiver propagation direction from Poynting vectors during the receiver extrapolation at each time step and the reflector normal direction by the phase-gradient method. With a new strategy that uses three direction vectors (the source and receiver propagation directions as well as the reflector normal direction), we provided more reliable ADCIGs that are free of low-wavenumber artifacts than any two of them do separately, when the migration velocity model was near to the correct velocity model. The 2D and 3D synthetic tests demonstrated the successful application of the new algorithms with acceptable accuracy, improved storage efficiency, and without an input/output bottleneck.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


2021 ◽  
Author(s):  
Herurisa Rusmanugroho ◽  
Makky Sandra Jaya ◽  
M Hafizal Zahir ◽  
M Faizal Rahim

Abstract The performance of pre-stack depth migration (PSDM) on the fiber optic, distributed acoustic sensing (DAS), vertical seismic profile (VSP) data has rarely been reported. We show the results of PSDM for the fiber optic cables, newly developed and tested at a field in Canada. We apply Kirchhoff migration, Fresnel volume migration and reverse time migration (RTM) to the walkway VSP data to obtain high resolution images of the shallow to deeper structures and provide the performance analysis of the migration methods for the DAS VSP data.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S567-S580 ◽  
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Arthur Cheng ◽  
Yuzhu Liu ◽  
Liangguo Dong

Least-squares reverse time migration (LSRTM), which aims to match the modeled data with the observed data in an iterative inversion procedure, is very sensitive to the accuracy of the migration velocity model. If the migration velocity model contains errors, the final migration image may be defocused and incoherent. We have used an LSRTM scheme based on the subsurface offset extended imaging condition, least-squares extended reverse time migration (LSERTM), to provide a better solution when large velocity errors exist. By introducing an extra dimension in the image space, LSERTM can fit the observed data even when significant errors are present in the migration velocity model. We further investigate this property and find that after stacking the extended migration images along the subsurface offset axis within the theoretical lateral resolution limit, we can obtain an image with better coherency and fewer migration artifacts. Using multiple numerical examples, we demonstrate that our method provides superior inversion results compared to conventional LSRTM when the bulk velocity errors are as large as 10%.


Sign in / Sign up

Export Citation Format

Share Document