Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. S65-S77 ◽  
Author(s):  
Hu Jin ◽  
George A. McMechan ◽  
Bao Nguyen

We have developed a new method of extracting angle-domain common-image gathers (ADCIGs) from prestack reverse time migration (RTM) that has minimal intermediate storage requirements. To include multipathing, we applied an imaging condition for prestack RTM that uses multiple excitation image times. Instead of saving the full-source snapshots at all time steps, we picked and saved only a few of the highest amplitude arrivals, and their corresponding excitation times, of the source wavefield at each grid point, and we crosscorrelated with the receiver wavefield. When extracting the ADCIGs from RTM, we calculated the source propagation direction from the gradient of the excitation times. The result was that the source time snapshots do not have to be saved or reconstructed during RTM or while extracting ADCIGs. We calculated the receiver propagation direction from Poynting vectors during the receiver extrapolation at each time step and the reflector normal direction by the phase-gradient method. With a new strategy that uses three direction vectors (the source and receiver propagation directions as well as the reflector normal direction), we provided more reliable ADCIGs that are free of low-wavenumber artifacts than any two of them do separately, when the migration velocity model was near to the correct velocity model. The 2D and 3D synthetic tests demonstrated the successful application of the new algorithms with acceptable accuracy, improved storage efficiency, and without an input/output bottleneck.

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


2021 ◽  
pp. 104469
Author(s):  
A. Maul ◽  
A. Bulcão ◽  
R.M. Dias ◽  
B. Pereira-Dias ◽  
L. Teixeira ◽  
...  

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S377-S389
Author(s):  
Yuting Duan ◽  
Paul Sava

We have developed three approaches for 3D angle decomposition using elastic reverse time migration. The first approach uses time- and space-lag common-image point gathers computed from elastic wavefields. This method facilitates computing angle gathers at sparse and possibly irregularly distributed points in the image. The second approach transforms extended time-lag images to the angle domain using slant stacks along 4D surfaces, instead of using slant stacks along 2D straight lines. The third approach transforms space-lag common-image gathers to the angle domain. The three proposed methods solve a system of equations that handles dipping reflectors, and they yield angle gathers that are more accurate compared with those obtained via alternative existing methods. We have developed our methods using 2D and 3D synthetic and field data examples and found that they provide accurate opening and azimuth angles and they can handle steeply dipping reflectors and converted wave modes.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S359-S376 ◽  
Author(s):  
Chen Tang ◽  
George A. McMechan

Because receiver wavefields reconstructed from observed data are not as stable as synthetic source wavefields, the source-propagation vector and the reflector normal have often been used to calculate angle-domain common-image gathers (ADCIGs) from reverse time migration. However, the existing data flows have three main limitations: (1) Calculating the propagation direction only at the wavefields with maximum amplitudes ignores multiarrivals; using the crosscorrelation imaging condition at each time step can include the multiarrivals but will result in backscattering artifacts. (2) Neither amplitude picking nor Poynting-vector calculations are accurate for overlapping wavefields. (3) Calculating the reflector normal in space is not accurate for a structurally complicated reflection image, and calculating it in the wavenumber ([Formula: see text]) domain may give Fourier truncation artifacts. We address these three limitations in an improved data flow with two steps: During imaging, we use a multidirectional Poynting vector (MPV) to calculate the propagation vectors of the source wavefield at each time step and output intermediate source-angle-domain CIGs (SACIGs). After imaging, we use an antitruncation-artifact Fourier transform (ATFT) to convert SACIGs to ADCIGs in the [Formula: see text]-domain. To achieve the new flow, another three innovative aspects are included. In the first step, we develop an angle-tapering scheme to remove the Fourier truncation artifacts during the wave decomposition (of MPV) while preserving the amplitudes, and we use a wavefield decomposition plus angle-filter imaging condition to remove the backscattering artifacts in the SACIGs. In the second step, we compare two algorithms to remove the Fourier truncation artifacts that are caused by the plane-wave assumption. One uses an antileakage FT (ALFT) in local windows; the other uses an antitruncation-artifact FT, which relaxes the plane-wave assumption and thus can be done for the global space. The second algorithm is preferred. Numerical tests indicate that this new flow (source-side MPV plus ATFT) gives high-quality ADCIGs.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Jingjing Zong ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Yunyue Elita Li ◽  
Yukai Wo ◽  
...  

Fractured basements not only are potential reservoirs for hydrocarbon resources but also provide significant storage space for carbon dioxide ( CO2) sequestration and radioactive waste disposal. However, fractured basements are challenging to seismic imaging methods due to the complexities in their fault and fracture networks, strong heterogeneity, highly variable structural dip, and strong impedance contrasts between the basement rocks and the surrounding sediments. We present a case where a walk-away vertical seismic profiling (VSP) survey was conducted at a fractured-basement play located in Bohai Bay Basin, China, to improve the resolution compared to a pre-existing surface seismic profile. Using the advanced random-space-shift (RSS) reverse-time-migration (RTM), we obtain a high-resolution image with a clear delineation of the highly faulted dipping basement. From numerical and field examples, we show that the application of the RSS-RTM improves the final image by mitigating unavoidable errors in the migration velocity model which would otherwise result in an unfocused image using the conventional RTM approach. In addition, we demonstrate the importance of proper wavefield separation using three-component (3C) recordings, which is the key to ensuring the quality of the final image. With an optimized VSP imaging workflow, we provide an enhanced image for the fractured basement to support the geologic interpretations and development decisions.


Geophysics ◽  
2021 ◽  
pp. 1-76
Author(s):  
Zhiming Ren ◽  
Qianzong Bao ◽  
Shigang Xu

Reverse time migration (RTM) generally uses the zero-lag crosscorrelation imaging condition, requiring the source and receiver wavefields to be known at the same time step. However, the receiver wavefield is calculated in time-reversed order, opposite to the order of the forward-propagated source wavefield. The inconvenience can be resolved by storing the source wavefield on a computer memory/disk or by reconstructing the source wavefield on the fly for multiplication with the receiver wavefield. The storage requirements for the former approach can be very large. Hence, we have followed the latter route and developed an efficient source wavefield reconstruction method. During forward propagation, the boundary wavefields at N layers of the spatial grid points and a linear combination of wavefields at M − N layers of the spatial grid points are stored. During backward propagation, it reconstructs the source wavefield using the saved wavefields based on a new finite-difference stencil ( M is the operator length parameter, and 0 ≤  N ≤  M). Unlike existing methods, our method allows a trade-off between accuracy and storage by adjusting N. A maximum-norm-based objective function is constructed to optimize the reconstruction coefficients based on the minimax approximation using the Remez exchange algorithm. Dispersion and stability analyses reveal that our method is more accurate and marginally less stable than the method that requires storage of a combination of boundary wavefields. Our method has been applied to 3D RTM on synthetic and field data. Numerical examples indicate that our method with N = 1 can produce images that are close to those obtained using a conventional method of storing M layers of boundary wavefields. The memory usage of our method is ( N + 1)/ M times that of the conventional method.


Sign in / Sign up

Export Citation Format

Share Document