Analysis of Different Well Log and Seismic Data for Estimating Shear Wave Polarization Direction

2012 ◽  
Author(s):  
Naser Tamimi ◽  
Paritosh Singh
Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Wei Tian ◽  
Xiaomin Li ◽  
Lei Wang

Disparities between fold amplitude (A) and intrusion thickness (Hsill) are critical in identifying elastic or inelastic deformation in a forced fold. However, accurate measurements of these two parameters are challenging because of the limit in separability and detectability of the seismic data. We combined wireline data and 3-D seismic data from the TZ-47 exploring area in the Tarim Basin, Northwest China, to accurately constrain the fold amplitude and total thickness of sills that induced roof uplift in the terrain. Results from the measurement show that the forced fold amplitude is 155.0 m. After decompaction, the original forced fold amplitude in the area penetrated by the well T47 ranged from 159.9 to 225.8 m, which overlaps the total thickness of the stack of sills recovered by seismic method (171.4 m) and well log method (181.0 m). Therefore, the fold amplitude at T47 area is likely to be elastic. In contrast, the outer area of the TZ-47 forced fold is characterized by shear-style deformation, indicating inelastic deformation at the marginal area. It is suggested that interbedded limestone layers would play an important role in strengthening the roof layers, preventing inelastic deformation during the emplacement of intrusive magma.


2007 ◽  
Author(s):  
Zhongping Qian ◽  
Xiang‐Yang Li ◽  
Mark Chapman ◽  
Yonggang Zhang ◽  
Yanguang Wang

2021 ◽  
pp. 1-50
Author(s):  
Yongchae Cho

The prediction of natural fracture networks and their geomechanical properties remains a challenge for unconventional reservoir characterization. Since natural fractures are highly heterogeneous and sub-seismic scale, integrating petrophysical data (i.e., cores, well logs) with seismic data is important for building a reliable natural fracture model. Therefore, I introduce an integrated and stochastic approach for discrete fracture network modeling with field data demonstration. In the proposed method, I first perform a seismic attribute analysis to highlight the discontinuity in the seismic data. Then, I extrapolate the well log data which includes localized but high-confidence information. By using the fracture intensity model including both seismic and well logs, I build the final natural fracture model which can be used as a background model for the subsequent geomechanical analysis such as simulation of hydraulic fractures propagation. As a result, the proposed workflow combining multiscale data in a stochastic approach constructs a reliable natural fracture model. I validate the constructed fracture distribution by its good agreement with the well log data.


Author(s):  
A. W. H. Bunch ◽  
P. W. Dromgoole
Keyword(s):  
Well Log ◽  

2019 ◽  
Author(s):  
Zhiwen Deng ◽  
Chengwu Li ◽  
Guowen Chen ◽  
Jing Yang ◽  
Ruizhen Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document