Multicomponent prestack waveform inversion for VTI media parameters using a non-dominated sorting genetic algorithm

2012 ◽  
Author(s):  
Amit Padhi ◽  
Subhashis Mallick
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R553-R563
Author(s):  
Sagar Singh ◽  
Ilya Tsvankin ◽  
Ehsan Zabihi Naeini

The nonlinearity of full-waveform inversion (FWI) and parameter trade-offs can prevent convergence toward the actual model, especially for elastic anisotropic media. The problems with parameter updating become particularly severe if ultra-low-frequency seismic data are unavailable, and the initial model is not sufficiently accurate. We introduce a robust way to constrain the inversion workflow using borehole information obtained from well logs. These constraints are included in the form of rock-physics relationships for different geologic facies (e.g., shale, sand, salt, and limestone). We develop a multiscale FWI algorithm for transversely isotropic media with a vertical symmetry axis (VTI media) that incorporates facies information through a regularization term in the objective function. That term is updated during the inversion by using the models obtained at the previous inversion stage. To account for lateral heterogeneity between sparse borehole locations, we use an image-guided smoothing algorithm. Numerical testing for structurally complex anisotropic media demonstrates that the facies-based constraints may ensure the convergence of the objective function towards the global minimum in the absence of ultra-low-frequency data and for simple (even 1D) initial models. We test the algorithm on clean data and on surface records contaminated by Gaussian noise. The algorithm also produces a high-resolution facies model, which should be instrumental in reservoir characterization.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B15-B32 ◽  
Author(s):  
Shaun Hadden ◽  
R. Gerhard Pratt ◽  
Brendan Smithyman

Anisotropic waveform tomography (AWT) uses anisotropic traveltime tomography followed by anisotropic full-waveform inversion (FWI). Such an approach is required for FWI in cases in which the geology is likely to exhibit anisotropy. An important anisotropy class is that of transverse isotropy (TI), and the special case of TI media with a vertical symmetry axis (VTI) media is often used to represent elasticity in undeformed sedimentary layering. We have developed an approach for AWT that uses an acoustic approximation to simulate waves in VTI media, and we apply this approach to crosshole data. In our approach, the best-fitting models of seismic velocity and Thomsen VTI anisotropy parameters are initially obtained using anisotropic traveltime tomography, and they are then used as the starting models for VTI FWI within the acoustic approximation. One common problem with the acoustic approach to TI media is the generation of late-arriving (spurious) S-waves as a by-product of the equation system. We used a Laplace-Fourier approach that effectively damps the spurious S-waves to suppress artifacts that might otherwise corrupt the final inversion results. The results of applying AWT to synthetic data illustrate the trade-offs in resolution between the two parameter classes of velocity and anisotropy, and they also verify anisotropic traveltime tomography as a valid method for generating starting models for FWI. The synthetic study further indicates the importance of smoothing the anisotropy parameters before proceeding to FWI inversions of the velocity parameter. The AWT technique is applied to real crosshole field gathers from a sedimentary environment in Western Canada, and the results are compared with the results from a simpler (elliptical) anisotropy model. The transversely isotropic approach yields an FWI image of the vertical velocity that (1) exhibits a superior resolution and (2) better predicts the field data than does the elliptical approach.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC113-WC121 ◽  
Author(s):  
Nishant Kamath ◽  
Ilya Tsvankin

Although full-waveform inversion (FWI) has shown significant promise in reconstructing heterogeneous velocity fields, most existing methodologies are limited to acoustic models. We extend FWI to multicomponent (PP and PS) data from anisotropic media, with the current implementation limited to a stack of horizontal, homogeneous VTI (transversely isotropic with a vertical symmetry axis) layers. The algorithm is designed to estimate the interval vertical P- and S-wave velocities ([Formula: see text] and [Formula: see text]) and Thomsen parameters [Formula: see text] and [Formula: see text] from long-spread PP and PSV reflections. The forward-modeling operator is based on the anisotropic reflectivity technique, and the inversion is performed in the time domain using the gradient (Gauss-Newton) method. We employ nonhyperbolic semblance analysis and Dix-type equations to build the initial model. To identify the medium parameters constrained by the data, we perform eigenvalue/eigenvector decomposition of the approximate Hessian matrix for a VTI layer embedded between isotropic media. Analysis of the eigenvectors shows that the parameters [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] (density is assumed to be known) can be resolved not only by joint inversion of PP and PS data, but also with PP reflections alone. Although the inversion becomes more stable with increasing spreadlength-to-depth ([Formula: see text]) ratio, the parameters of the three-layer model are constrained even by PP data acquired on conventional spreads ([Formula: see text]). For multilayered VTI media, the sensitivity of the objective function to the interval parameters decreases with depth. Still, it is possible to resolve [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for the deeper layers using PP-waves, if the ratio [Formula: see text] for the bottom of the layer reaches two. Mode-converted waves provide useful additional constraints for FWI, which become essential for smaller spreads. The insights gained here by examining horizontally layered models should help guide the inversion for heterogeneous TI media.


Sign in / Sign up

Export Citation Format

Share Document