Permian Basin seismic data reprocessing: A case study

Author(s):  
Yan Yan ◽  
Xianhuai Zhu ◽  
Junru Jiao ◽  
Pan Deng ◽  
Bin Yang ◽  
...  
Keyword(s):  
2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Lourenildo W.B. Leite ◽  
J. Mann ◽  
Wildney W.S. Vieira

ABSTRACT. The present case study results from a consistent processing and imaging of marine seismic data from a set collected over sedimentary basins of the East Brazilian Atlantic. Our general aim is... RESUMO. O presente artigo resulta de um processamento e imageamento consistentes de dados sísmicos marinhos de levantamento realizado em bacias sedimentares do Atlântico do Nordeste...


2021 ◽  
Vol 40 (3) ◽  
pp. 186-192
Author(s):  
Thomas Krayenbuehl ◽  
Nadeem Balushi ◽  
Stephane Gesbert

The principles and benefits of seismic sequence stratigraphy have withstood the test of time, but the application of seismic sequence stratigraphy is still carried out mostly manually. Several tool kits have been developed to semiautomatically extract dense stacks of horizons from seismic data, but they stop short of exploiting the full potential of seismo-stratigraphic models. We introduce novel geometric seismic attributes that associate relative geologic age models with seismic geomorphological models. We propose that a relative sea level curve can be derived from the models. The approach is demonstrated on a case study from the Lower Cretaceous Kahmah Group in the northwestern part of Oman where it helps in sweet-spotting and derisking elusive stratigraphic traps.


2021 ◽  
Author(s):  
Fahd Siddiqui ◽  
Mohammadreza Kamyab ◽  
Michael Lowder

Abstract The economic success of unconventional reservoirs relies on driving down completion costs. Manually measuring the operational efficiency for a multi-well pad can be error-prone and time-prohibitive. Complete automation of this analysis can provide an effortless real-time insight to completion engineers. This study presents a real-time method for measuring the time spent on each completion activity, thereby enabling the identification and potential cost reduction avenues. Two data acquisition boxes are utilized at the completion site to transmit both the fracturing and wireline data in real-time to a cloud server. A data processing algorithm is described to determine the start and end of these two operations for each stage of every well on the pad. The described method then determines other activity intervals (fracturing swap-over, wireline swap-over, and waiting on offset wells) based on the relationship between the fracturing and wireline segments of all the wells. The processed data results can be viewed in real-time on mobile or computers connected to the cloud. Viewing the full operational time log in real-time helps engineers analyze the whole operation and determine key performance indicators (KPIs) such as the number of fractured stages per day, pumping percentage, average fracture, and wireline swap-over durations for a given time period. In addition, the performance of the day and night crews can be evaluated. By plotting a comparison of KPIs for wireline and fracturing times, trends can be readily identified for improving operational efficiency. Practices from best-performing stages can be adopted to reduce non-pumping times. This helps operators save time and money to optimize for more efficient operations. As the number of wells increases, the complexity of manual generation of time-log increases. The presented method can handle multi-well fracturing and wireline operations without such difficulty and in real-time. A case study is also presented, where an operator in the US Permian basin used this method in real-time to view and optimize zipper operations. Analysis indicated that the time spent on the swap over activities could be reduced. This operator set a realistic goal of reducing 10 minutes per swap-over interval. Within one pad, the goal was reached utilizing this method, resulting in reducing 15 hours from the total pad time. The presented method provides an automated overview of fracturing operations. Based on the analysis, timely decisions can be made to reduce operational costs. Moreover, because this method is automated, it is not limited to single well operations but can handle multi-well pad completion designs that are commonplace in unconventionals.


2022 ◽  
Vol 41 (1) ◽  
pp. 54-61
Author(s):  
Moyagabo K. Rapetsoa ◽  
Musa S. D. Manzi ◽  
Mpofana Sihoyiya ◽  
Michael Westgate ◽  
Phumlani Kubeka ◽  
...  

We demonstrate the application of seismic methods using in-mine infrastructure such as exploration tunnels to image platinum deposits and geologic structures using different acquisition configurations. In 2020, seismic experiments were conducted underground at the Maseve platinum mine in the Bushveld Complex of South Africa. These seismic experiments were part of the Advanced Orebody Knowledge project titled “Developing technologies that will be used to obtain information ahead of the mine face.” In these experiments, we recorded active and passive seismic data using surface nodal arrays and an in-mine seismic land streamer. We focus on analyzing only the in-mine active seismic portion of the survey. The tunnel seismic survey consisted of seven 2D profiles in exploration tunnels, located approximately 550 m below ground surface and a few meters above known platinum deposits. A careful data-processing approach was adopted to enhance high-quality reflections and suppress infrastructure-generated noise. Despite challenges presented by the in-mine noisy environment, we successfully imaged the platinum deposits with the aid of borehole data and geologic models. The results open opportunities to adapt surface-based geophysical instruments to address challenging in-mine environments for mineral exploration.


2021 ◽  
pp. 1-67
Author(s):  
Stewart Smith ◽  
Olesya Zimina ◽  
Surender Manral ◽  
Michael Nickel

Seismic fault detection using machine learning techniques, in particular the convolution neural network (CNN), is becoming a widely accepted practice in the field of seismic interpretation. Machine learning algorithms are trained to mimic the capabilities of an experienced interpreter by recognizing patterns within seismic data and classifying them. Regardless of the method of seismic fault detection, interpretation or extraction of 3D fault representations from edge evidence or fault probability volumes is routine. Extracted fault representations are important to the understanding of the subsurface geology and are a critical input to upstream workflows including structural framework definition, static reservoir and petroleum system modeling, and well planning and de-risking activities. Efforts to automate the detection and extraction of geological features from seismic data have evolved in line with advances in computer algorithms, hardware, and machine learning techniques. We have developed an assisted fault interpretation workflow for seismic fault detection and extraction, demonstrated through a case study from the Groningen gas field of the Upper Permian, Dutch Rotliegend; a heavily faulted, subsalt gas field located onshore, NE Netherlands. Supervised using interpreter-led labeling, we apply a 2D multi-CNN to detect faults within a 3D pre-stack depth migrated seismic dataset. After prediction, we apply a geometric evaluation of predicted faults, using a principal component analysis (PCA) to produce geometric attribute representations (strike azimuth and planarity) of the fault prediction. Strike azimuth and planarity attributes are used to validate and automatically extract consistent 3D fault geometries, providing geological context to the interpreter and input to dependent workflows more efficiently.


2014 ◽  
Vol 580-583 ◽  
pp. 1649-1652
Author(s):  
Yun Bing Hu ◽  
Yao Wang ◽  
Yan Qing Wu ◽  
Zi Xuan Liu

This paper mainly discusses that the tunnel seismic advance detection is applied in mine geo-hazard detection. Separating the field seismic data of mine by radon transformation and migrating the data through advance way and side way, we accomplished advance and side detection simultaneously by one-time shot seismic data. Case study was carried on at Qinshui basin Yangmei No.5 mine field, and detection results mainly coincide with out-crops, demonstrating that our method can be one reference in mine geo-hazard detection.


Sign in / Sign up

Export Citation Format

Share Document