qinshui basin
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 100)

H-INDEX

26
(FIVE YEARS 6)

Author(s):  
Tao Jin ◽  
Qingjun Meng ◽  
Xiangdong Li ◽  
Lai Zhou

Production of coalbed methane (CBM) resources commonly requires using hydraulic fracturing and chemical production well additives. Concern exists for the existence of chemical compounds in CBM produced water, due to the risk of environmental receptor contamination. In this study, parallel factor method analysis (PARAFAC), fluorescence index, and the fluorescence area integral methods were used to analyse the properties of CBM produced water sampled from Shizhuang Block (one of the most active CBM-producing regions in the Qinshui Basin). A culture experiment was designed to determine the effect of discharged CBM produced water on microorganisms in freshwater. Water quality analysis shows the hydrochemistry of most water samples as Na-HCO3 type produced water of CBM appears as a generally weak alkaline (pH 8.69 ± 0.185) with high salinity, high alkalinity, and a high chemical oxygen demand (COD) value. Three individual components were identified by using parallel factor method analysis as humic-like components (C1), fulvic-like components (C2), and amino acid-like substances (C3). The fluorescence characteristic index comprehensively explains that the fluorescent substances in CBM produced water has the characteristics of a low degree of humification and a high recent self-generating source. The region integration results of characteristic peaks show that tyrosine-like and tryptophan-like materials account for more than 67% of fluorescent substances in CBM produced water. The addition of produced water from coalbed methane promotes the growth of freshwater bacteria, and this process is accompanied by the decrease of the proportion of fulvic acid, humic acid, and the increase of the proportion of soluble microbial metabolites. This paper proposes a convenient method for organic matter identification of CBM produced water and provides some theoretical support and reference for the improvement of CBM water treatment and utilization.


Author(s):  
Dong Xiao ◽  
Cong Zhang ◽  
Junyong Wu ◽  
Enyuan Wang ◽  
Hailun He ◽  
...  

AbstractCoal bio-gasification is one in situ coal gasification technology that utilizes the digestion of organic components in coal by methanogenic bacteria. It is not only an effective technology to enhance the recoverable reserves of coalbed methane, but also an important technical method to promote clean coal utilization. Relevant laboratory researches have confirmed the technical feasibility of anthracite bio-gasification. However, in the complex environment of coal bed, whether in situ gas can be yield with methanogenic bacteria needs to be verified by in situ experiments. In this study, a vertical well and a horizontal well were used in Qinshui basin to perform field experiments to confirm the technical industrial feasibility. The concentration of Cl− ion and number changes of Methanogen spp. were used to trace nutrition diffusion. Gas production changes and coalbed biome evolution were used to analyze technical implementation results. The trace data and biome evolution identified that: (1) The development of Methanoculleus spp. has a significant positive correlation with culture medium diffusion; (2) the structure of coalbed microbial community was significantly changed with the injection of nutrition, and the newly constructed methanogenic community was more suitable for fermentation of coal; and (3) the evolution of dominant microflora has further enhanced bio-gasification of coal. Gas production data showed that the gasification of coal lasted 635 and 799 days and yielded 74,817 m3 and 251,754 m3 coalbed methane in Z-159 and Z-7H wells, respectively. One nutrition injection in coalbed achieved an average of 717 days of continuous gas production in experimental wells. Results confirmed that coalbed methane enhancement with bio-gasification of coal is a potential technology to achieve the productivity improvement of coalbed methane wells. And the findings of this study can help to further understand the mechanism of in situ coal bio-gasification and provide theoretical support for the development of biomining of coal.


ACS Omega ◽  
2021 ◽  
Author(s):  
Qing Han ◽  
Hongguang Guo ◽  
Jinlong Zhang ◽  
Zaixing Huang ◽  
Michael Allan Urynowicz ◽  
...  

2021 ◽  
Vol 2044 (1) ◽  
pp. 012115
Author(s):  
Xiaohua Lian ◽  
Ruibin Zhu ◽  
Guangbo Zhang ◽  
Xuan Wang ◽  
Wenfeng Ma ◽  
...  

2021 ◽  
Author(s):  
Aikuan Wang ◽  
qinghui wang ◽  
Pei Shao ◽  
Tian Fu ◽  
Moran Cao

Abstract High rank coal, such as anthracite, has been considered difficult to generate biogas because of the high coalification degree. Selecting anthracite from Sihe coal mine, Qinshui basin, China, as substrate, this study carried out a simulation experiment of biogas generation for 80 days, the purpose of which was to verify whether anthracite could be bio-degraded to produce biogas under laboratory conditions. The results showed that the selected anthracite can be utilized by methanogenic bacteria to produce biogas and the approximate production field was 1.79mL/g, which was less than that of lower rank coal of other published studies. The generation process can be divided into a rapid growth stage (0-30d) and a slow descent stage (30-80d). CO2 and CH4 are the main components of biogas, although some heavy-hydrocarbons were also tested. The CO2 concentrations were low (<30%) and the δ13C-CH4 values were positive (-39.9‰ to -45.8‰), which suggested that the main biogas generation pathway was acetic fermentation. But at the same time, the concentrations of CH4 and CO2 were mutually increasing and decreasing with the passage of experiment time, and δ13C-CH4 tends to be lighten in the later stage(40-80d), suggesting that parts of biogenic CH4 was generated by way of CO2-reduction.


Sign in / Sign up

Export Citation Format

Share Document