Accurate and efficient integration of geophysical and hydraulic data at the subregional scale through Bayesian sequential simulation with log-linear pooling

Author(s):  
Raphael Nussbaumer ◽  
Grégoire Mariéthoz ◽  
Klaus Holliger ◽  
Erwan Gloaguen
2020 ◽  
Vol 221 (3) ◽  
pp. 2184-2200
Author(s):  
Raphaël Nussbaumer ◽  
Grégoire Mariethoz ◽  
Erwan Gloaguen ◽  
Klaus Holliger

SUMMARY Bayesian sequential simulation (BSS) is a geostastistical technique, which uses a secondary variable to guide the stochastic simulation of a primary variable. As such, BSS has proven significant promise for the integration of disparate hydrogeophysical data sets characterized by vastly differing spatial coverage and resolution of the primary and secondary variables. An inherent limitation of BSS is its tendency to underestimate the variance of the simulated fields due to the smooth nature of the secondary variable. Indeed, in its classical form, the method is unable to account for this smoothness because it assumes independence of the secondary variable with regard to neighbouring values of the primary variable. To overcome this limitation, we have modified the Bayesian updating with a log-linear pooling approach, which allows us to account for the inherent interdependence between the primary and the secondary variables by adding exponential weights to the corresponding probabilities. The proposed method is tested on a pertinent synthetic hydrogeophysical data set consisting of surface-based electrical resistivity tomography (ERT) data and local borehole measurements of the hydraulic conductivity. Our results show that, compared to classical BSS, the proposed log-linear pooling method using equal constant weights for the primary and secondary variables enhances the reproduction of the spatial statistics of the stochastic realizations, while maintaining a faithful correspondence with the geophysical data. Significant additional improvements can be achieved by optimizing the choice of these constant weights. We also explore a dynamic adaptation of the weights during the course of the simulation process, which provides valuable insights into the optimal parametrization of the proposed log-linear pooling approach. The results corroborate the strategy of selectively emphasizing the probabilities of the secondary and primary variables at the very beginning and for the remainder of the simulation process, respectively.


2015 ◽  
Author(s):  
Jacob Andreas ◽  
Dan Klein
Keyword(s):  

Author(s):  
Jaspreet Kaur

Manpower training and development is an important aspect of human resources management which must be embarked upon either proactively or reactively to meet any change brought about in the course of time. Training is a continuous and perennial activity. It provides employees with the knowledge and skills to perform more effectively. The study examines the opinions of trainees regarding the impact of training and development programmes on the productivity of employees in the selected banks. To evaluate the impact of training and development programmes on productivity of banking sector, multiple regression analysis was employed in both log as well as log-linear forms. Also the impact of three sets of training i.e. objectives, methods and basics on level of satisfaction of respondents with the training was also examined through employing the regression analysis in the similar manner.


1985 ◽  
Vol 12-13 ◽  
pp. 531-540
Author(s):  
W.G. Rudd ◽  
Chien J. Wang ◽  
Wu Peng

Sign in / Sign up

Export Citation Format

Share Document