Distributed acoustic sensing (DAS) field trials for near-surface geotechnical properties, earthquake seismology, and mine monitoring

Author(s):  
Herbert Wang ◽  
Dante Fratta ◽  
Neal Lord ◽  
Xiangfang Zeng ◽  
Thomas Coleman
2021 ◽  
Author(s):  
Nicola Piana Agostinetti ◽  
Alberto Villa ◽  
Gilberto Saccorotti

Abstract. We use PoroTOMO experimental data to compare the performance of Distributed Acoustic Sensing (DAS) and geophone data in executing standard exploration and monitoring activities. The PoroTOMO experiment consists of two "seismic systems": (a) a 8.6 km long optical fibre cable deployed across the Brady geothermal field and covering an area of 1.5 x 0.5 km with 100 m long segments, and (b) an array of 238 co-located geophones with an average spacing of 60 m. The PoroTOMO experiment recorded continuous seismic data between March 10th and March 25th 2016. During such period, a ML 4.3 regional event occurred in the southwest, about 150 km away from the geothermal field, together with several microseismic local events related to the geothermal activity. The seismic waves generated from such seismic events have been used as input data in this study. For the exploration tasks, we compare the propagation of the ML 4.3 event across the geothermal field in both seismic systems in term of relative time-delay, for a number of configurations and segments. Defined the propagation, we analyse and compare the amplitude and the signal-to-noise ratio (SNR) of the P-wave in the two systems at high resolution. For testing the potential in monitoring local seismicity, we first perform an analysis of the geophone data for locating a microseismic event, based on expert opinion. Then, we a adopt different workflow for the automatic location of the same microseismic event using DAS data. For testing the potential in monitoring distant event, data from the regional earthquake are used for retrieving both the propagation direction and apparent velocity of the wavefield, using a standard plane-wave-fitting approach. Our results indicate that: (1) at a local scale, the seismic P-waves propagation and their characteristics (i.e. SNR and amplitude) along a single cable segment are robustly consistent with recordings from co-located geophones (delay-times δt ∼ 0.3 over 400 m for both seismic systems) ; (2) the interpretation of seismic wave propagation across multiple separated segments is less clear, due to the heavy contamination of scattering sources and local velocity heterogeneities; nonetheless, results from the plane-wave fitting still indicate the possibility for a consistent detection and location of the event; (3) at high-resolution (10 m), large amplitude variations along the fibre cable seem to robustly correlate with near surface geology; (4) automatic monitoring of microseismicity can be performed with DAS recordings with results comparable to manual analysis of geophone recordings (i.e. maximum horizontal error on event location around 70 m for both geophones and DAS data) ; and (5) DAS data pre-conditioning (e.g., temporal sub-sampling and channel-stacking) and dedicated processing techniques are strictly necessary for making any real-time monitoring procedure feasible and trustable.


2020 ◽  
Vol 39 (11) ◽  
pp. 801-807
Author(s):  
Andreas Ellmauthaler ◽  
Brian C. Seabrook ◽  
Glenn A. Wilson ◽  
John Maida ◽  
Jeff Bush ◽  
...  

Topside distributed acoustic sensing (DAS) of subsea wells requires advanced optical engineering solutions to compensate for reduced acoustic bandwidth, optical losses, and back reflections that are accumulated through umbilicals, multiple wet- and dry-mate optical connectors, splices, optical feedthrough systems, and downhole fibers. To address these issues, we introduce a novel DAS solution based on subsea fiber topology consisting of two transmission fibers from topside and an optical circulator deployed in the optical flying lead at the subsea tree. This solution limits the sensing fiber portion to the downhole fiber, located below the subsea tree, and enables dry-tree-equivalent acoustic sampling frequencies of more than 10 kHz while eliminating all back reflections from multiple subsea connectors above the tree. When combined with enhanced backscatter single-mode fiber, this gives rise to a DAS interrogation system that is capable of providing dry-tree-equivalent acoustic sensing performance over the entire length of the subsea well, regardless of the tie-back distance. It also enables the same spectral-based DAS processing algorithms developed for seismic, sand control, injector/producer profiling, and well integrity on dry-tree wells to be applied directly to subsea DAS data. The performance of this subsea DAS system has been validated through a series of laboratory and field trials. We show the results of the tests and discuss how the system is deployed within subsea infrastructure.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Yarin Abukrat ◽  
Moshe Reshef

During the last decade, fiber-optic-based distributed acoustic sensing (DAS) has emerged as an affordable, easy-to-deploy, reliable, and non-invasive technique for high-resolution seismic sensing. We show that fiber deployments dedicated to near-surface seismic applications, commonly employed for the detection and localization of voids, can be used effectively with conventional processing techniques. We tested a variety of small-size sources in different geological environments. These sources, operated on and below the surface, were recorded by horizontal and vertical DAS arrays. Results and comparisons to data acquired by vertical-component geophones demonstrate that DAS may be sufficient for acquiring near-surface seismic data. Furthermore, we tried to address the issue of directional sensing by DAS arrays and use it to solve the problem of wave-mode separation. Records acquired by a unique acquisition setup suggest that one can use the nature of DAS systems as uniaxial strainmeters to record separated wave modes. Lastly, we applied two seismic methods on DAS data acquired at a test site: multi-channel analysis of surface waves (MASW) and shallow diffraction imaging. These methods allowed us to determine the feasibility of using DAS systems for imaging shallow subsurface voids. MASW was used to uncover anomalies in S-wave velocity, whereas shallow diffraction imaging was applied to identify the location of the void. Results obtained illustrate that by using these methods we are able to accurately detect the true location of the void.


2011 ◽  
Author(s):  
J. Mestayer ◽  
B. Cox ◽  
P. Wills ◽  
D. Kiyashchenko ◽  
J. Lopez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document