Sensitivity of PP- and PS-Joint Zoeppritz AVO inversion to the P-wave and S-wave velocities and density for a highly anisotropic VTI medium: Case study of Eagle Ford Shale

Author(s):  
Un Young Lim ◽  
Richard L. Gibson ◽  
Nurul Kabir
2002 ◽  
Vol 42 (1) ◽  
pp. 627
Author(s):  
R.G. Williams ◽  
G. Roberts ◽  
K. Hawkins

Seismic energy that has been mode converted from pwave to s-wave in the sub-surface may be recorded by multi-component surveys to obtain information about the elastic properties of the earth. Since the energy converted to s-wave is missing from the p-wave an alternative to recording OBC multi-component data is to examine p-wave data for the missing energy. Since pwave velocities are generally faster than s-wave velocities, then for a given reflection point the converted s-wave signal reaches the surface at a shorter offset than the equivalent p-wave information. Thus, it is necessary to record longer offsets for p-wave data than for multicomponent data in order to measure the same information.A non-linear, wide-angle (including post critical) AVO inversion has been developed that allows relative changes in p-wave velocities, s-wave velocities and density to be extracted from long offset p-wave data. To extract amplitudes at long offsets for this inversion it is necessary to image the data correctly, including correcting for higher order moveout and possibly anisotropy if it is present.The higher order moveout may itself be inverted to yield additional information about the anisotropy of the sub-surface.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


2021 ◽  
Author(s):  
Justin Allison ◽  
Glyn Roberts ◽  
Brad Hicks Hicks ◽  
Todd Lilly

Abstract Fracture treatments and stage designs for new wells have evolved considerably over the past decade contributingto significant production growth. For example, in the acreage discussed hererecently used higher intensity fracturing methods provided an ~80% increase in recovery rates compared with legacy wells. Older wells completed originally with less efficient techniques can also benefit from these more up-to-date designs and treatments using re-fracturing methods. These offer the prospect of economically boosting production in appropriately selected wells. While adding in-fill wells has often been favored by Operators as a lowerrisk option the number of wells being re-fractured has grown every year for the last decade. In this case study two adjacent Eagle Ford wells, comprising a newly completed and a re-fractured well, allow both methods to be considered and compared. Completion design and fracture treatment effectiveness are evaluated using the uniformity of proppant distribution at cluster and stage level as the primary measure. Perforation erosion measurements from downhole video footage is used as the main diagnostic. Novel data acquisition methods combined with successful well preparation provided comprehensive and high-quality datasets. The subsequent proppant distribution analysis for the two wells provides the highest confidence results presented to date. Clear, repeatable trends in distribution are observed and these are compared across multiple stage designs for both the newly completed and re-fractured well. Variations in design parameters and how these effects distribution and ultimately recovery are discussed. These include changes to perforation count per cluster, cluster spacing, cluster count per stage, stage length, perforation charge size and treatment rates and volumes. As a final consideration production records for the evaluated wells are also discussed. Historical industry data shows that the number of wells being re-fractured increases relative to the number of newly drilled wells being completed during periods of low oil and gas prices. With the industry again facing harsh economic realities an increasing number of decisions will be made on whether new or refractured wells, or a combination of both, provide the best solution to replace otherwise inevitable production decline. This paper attempts to provide a detailed understanding of how proppant distribution, as a significant factor in production for hydraulically fractured wells, can be evaluated and considered in these decisions.


2018 ◽  
Vol 67 (1) ◽  
pp. 41-57
Author(s):  
Monika Dec ◽  
Marcin Polkowski ◽  
Tomasz Janik ◽  
Krystyna Stec ◽  
Marek Grad

2019 ◽  
Vol 283 ◽  
pp. 06003
Author(s):  
Guangxue Zheng ◽  
Hanhao Zhu ◽  
Jun Zhu

A method of geo-acoustic parameter inversion based on the Bayesian theory is proposed for the acquisition of acoustic parameters in shallow sea with the elastic seabed. Firstly, the theoretical prediction value of the sound pressure field is calculated by the fast field method (FFM). According to the Bayesian theory, we establish the misfit function between the measured sound pressure field and the theoretical pressure field. It is under the assumption of Gaussian data errors which are in line with the likelihood function. Finally, the posterior probability density (PPD) of parameters is given as the result of inversion. Our research is conducted in the light of Metropolis sample rules. Apart from numerical simulations, a scaled model experiment has been taken in the laboratory tank. The results of numerical simulations and tank experiments show that sound pressure field calculated by the result of inversion is consistent with the measured sound pressure field. Besides, s-wave velocities, p-wave velocities and seafloor density have fewer uncertainties and are more sensitive to complex sound pressure than s-wave attenuation and p-wave attenuation. The received signals calculated by inversion results are keeping with received signals in the experiment which verify the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document