Multi-parameter full waveform inversion based on acoustic wave equation

2019 ◽  
Author(s):  
Binghong He ◽  
Wubao Fang ◽  
Guanghui Hu ◽  
Dingjin Liu
2018 ◽  
Vol 37 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Mathias Louboutin ◽  
Philipp Witte ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
Fabio Luporini ◽  
...  

This is the second part of a three-part tutorial series on full-waveform inversion (FWI) in which we provide a step-by-step walk through of setting up forward and adjoint wave equation solvers and an optimization framework for inversion. In Part 1 ( Louboutin et al., 2017 ), we showed how to use Devito ( http://www.opesci.org/devito-public ) to set up and solve acoustic wave equations with (impulsive) seismic sources and sample wavefields at the receiver locations to forward model shot records. Here in Part 2, we will discuss how to set up and solve adjoint wave equations with Devito and, from that, how we can calculate gradients and function values of the FWI objective function.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Guangchi Xing ◽  
Tieyuan Zhu

We formulate the Fréchet kernel computation using the adjoint-state method based on a fractional viscoacoustic wave equation. We first numerically prove that both the 1/2- and the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we show that the adjoint wave propagator preserves the dispersion and compensates the amplitude, while the time-reversed adjoint wave propagator behaves identically as the forward propagator with the same dispersion and dissipation characters. Without introducing rheological mechanisms, this formulation adopts an explicit Q parameterization, which avoids the implicit Q in the conventional viscoacoustic/viscoelastic full waveform inversion ( Q-FWI). In addition, because of the decoupling of operators in the wave equation, the viscoacoustic Fréchet kernel is separated into three distinct contributions with clear physical meanings: lossless propagation, dispersion, and dissipation. We find that the lossless propagation kernel dominates the velocity kernel, while the dissipation kernel dominates the attenuation kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-difference method, we conduct a numerical example to demonstrate the capability of the kernels to characterize both velocity and attenuation anomalies. The kernels of different misfit measurements are presented to investigate their different sensitivities. Our results suggest that rather than the traveltime, the amplitude and the waveform kernels are more suitable to capture attenuation anomalies. These kernels lay the foundation for the multiparameter inversion with the fractional formulation, and the decoupled nature of them promotes our understanding of the significance of different physical processes in the Q-FWI.


2018 ◽  
Vol 37 (2) ◽  
pp. 142-145 ◽  
Author(s):  
Philipp Witte ◽  
Mathias Louboutin ◽  
Keegan Lensink ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
...  

This tutorial is the third part of a full-waveform inversion (FWI) tutorial series with a step-by-step walkthrough of setting up forward and adjoint wave equations and building a basic FWI inversion framework. For discretizing and solving wave equations, we use Devito ( http://www.opesci.org/devito-public ), a Python-based domain-specific language for automated generation of finite-difference code ( Lange et al., 2016 ). The first two parts of this tutorial ( Louboutin et al., 2017 , 2018 ) demonstrated how to solve the acoustic wave equation for modeling seismic shot records and how to compute the gradient of the FWI objective function using the adjoint-state method. With these two key ingredients, we will now build an inversion framework that can be used to minimize the FWI least-squares objective function.


2014 ◽  
Vol 105 ◽  
pp. 120-132 ◽  
Author(s):  
Woohyun Son ◽  
Sukjoon Pyun ◽  
Changsoo Shin ◽  
Han-Joon Kim

Sign in / Sign up

Export Citation Format

Share Document