Stochastic inversion by trace matching for carbonate reservoir property prediction: A Mishrif Reservoir case study

2019 ◽  
Vol 38 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Sara R. Grant ◽  
Matthew J. Hughes ◽  
O. J. Olatoke ◽  
Neil Philip

Estimation of reservoir properties and facies from seismic data is a well-established technique, and there are numerous methods in common usage. Our 1D stochastic inversion process (ODiSI), based on matching large numbers of pseudowells to color-inverted angle stacks, produces good estimations of reservoir properties, facies probabilities, and associated uncertainties. Historically, ODiSI has only been applied to siliciclastic reservoir intervals. However, the technique is equally suited to carbonate reservoirs, and ODiSI gives good results for the Mishrif Reservoir interval in the Rumaila Field in Iraq. Of course, a thorough awareness of the quality of all input well data and detailed validation of the parameters input to the inversion process is crucial to understanding the accuracy of the results.

Author(s):  
B. V. Platov ◽  
◽  
A. N. Kolchugin ◽  
E. A. Korolev ◽  
D. S. Nikolaev ◽  
...  

A feature of the oil-bearing carbonate deposits of the lower Pennsylvanian in the east of the Russian platform is their rapid vertical and horizontal change. It is often difficult to make correlations between sections, especially in the absence of core data when using only geophysical data. In addition, not all facies are reliably identified and traceable from log data and not all have high reservoir properties. Authors made an attempt to trace the promising facies both to adjacent wells and, in general, to the entire field area using core study results and translation of these results using log and seismic data. The data showed pinching of rocks with high reservoir characteristics in the direction of the selected profile (from south to north within the field). Coastal shallow water facies, represented by Grainstones and Packstones, with high reservoir properties in the south of the field, are replaced by lagoon facies and facies of subaerial exposures, represented by Wakestones and Mudstones with low reservoir characteristics, in the north of the field. The authors suggest that this approach can be applicable for rocks both in this region and for areas with a similar structure. Keywords: pinch-out; well data; seismic data; limestone; facies; reservoir rocks.


2020 ◽  
Vol 60 (2) ◽  
pp. 685
Author(s):  
Said Amiribesheli ◽  
Joshua Thorp ◽  
Julia Davies

Most of the discovered hydrocarbons in the Browse Basin occurred within the Mesozoic intervals, while deeper Paleozoic sequences have been seldom explored. Lack of Paleozoic exploration in the Browse Basin has been attributed to the lack of well penetrations, poor understanding of the petroleum systems and paucity of seismic data. The onshore Canning Basin with several commercial fields and discoveries is the most appropriate analogue for understanding the Paleozoic sequences in the region. With the integration of geophysical data (i.e. gravity, magnetic and seismic), well data and geology, the Paleozoic prospectivity of the Browse Basin can be further enlightened. Modern long offset (8 m) Vampire 2D seismic data were acquired by Searcher to address some of the complex challenges in the Browse Basin. Reservoir quality of the Brewster Formation, volcanic discrimination within the Plover Formation and identification of deeper Triassic and Paleozoic plays are some examples of these challenges in the Browse Basin. Recently Searcher reprocessed this regionally important Vampire 2D seismic dataset that ties to 60 wells. The broadband pre-stack depth migration reprocessed data were inverted to extract three petro-elastic properties of acoustic impedance, Vp/Vs and density by three-term amplitude versus offset inversion algorithm to improve imaging of deeper plays and delineate reservoir properties. This paper discusses how several potential Paleozoic reservoir-seal pairs can be identified in the Browse Basin by utilising the integration of Vampire 2D seismic data, quantitative interpretation products, regional geology and knowledge of the Canning Basin’s fields and discoveries. Previously there was little exploration of Paleozoic plays because they could not be imaged on seismic data. The potential Paleozoic reservoirs identified in this study include Permo-Carboniferous subcrop, Carboniferous-Devonian anticline and Carboniferous-Devonian rollover plays.


2020 ◽  
pp. 36-52
Author(s):  
I. A. Kopysova ◽  
A. S. Shirokov ◽  
D. V. Grandov ◽  
S. A. Eremin ◽  
E. N. Zhilin

The use of the method of seismic data acoustic inversion, in the presence of thick gas cap, can lead to difficulties when building background models of elastic parameters. In this regard, in the conditions of acoustically contrast thin environments within the perimeter of the Russkoye oil and gas condensate field, in addition to the standard version based on the well data, the authors considered a number of modified techniques ("block", "flat", and background models). The use of these background models provided the best results and made it possible to significantly improve the quality of predicting rock properties; based on the drilling results, effective penetration was ensured at 66 %, which was 102 % of the plan. Also, based on the inversion results, it became possible to predict reservoir properties using the Bayesian lithotype classification method.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. R429-R448 ◽  
Author(s):  
Maryam Hadavand Siri ◽  
Clayton V. Deutsch

We have developed a fully coupled categorical-multivariate continuous stochastic inversion with a combined petro-elastic model and convolution. The new multivariate stochastic seismic inversion approach simulates multiple reservoir properties simultaneously and conditions them to the well and seismic data at the same time through the close integration of multivariate geostatistical modeling and stochastic inversion. This approach combines a trace-by-trace (column-wise) adaptive sampling algorithm with multivariate geostatistical techniques to select reservoir properties that match the seismic data. The adaptive sampling method uses an acceptance-rejection approach to condition geostatistical models to the well and seismic data. The adaptive sampling algorithm defines a practical stopping criteria based on the inherent uncertainty due to modeling assumptions and the size of the uncertainty space. This technique samples the realizations inside the space of uncertainty; the number of realizations attempted increases with the size of the space of uncertainty. Characterizing multiple reservoir properties simultaneously through the close integration of seismic inversion and multivariate geostatistical techniques leads to improved high-resolution reservoir property models that reproduce the original seismic data. A case study is considered to compare the proposed stochastic inversion approach with the conventional methods. The case study represents multivariate stochastic inversion provides high-resolution facies and reservoir physical properties simultaneously that reproduce the original seismic data within quality of data better than the other approaches.


2013 ◽  
Vol 96 ◽  
pp. 98-106 ◽  
Author(s):  
Sadegh Karimpouli ◽  
Hossein Hassani ◽  
Alireza Malehmir ◽  
Majid Nabi-Bidhendi ◽  
Hossein Khoshdel

1999 ◽  
Vol 2 (04) ◽  
pp. 334-340 ◽  
Author(s):  
Philippe Lamy ◽  
P.A. Swaby ◽  
P.S. Rowbotham ◽  
Olivier Dubrule ◽  
A. Haas

Summary The methodology presented in this paper incorporates seismic data, geological knowledge and well logs to produce models of reservoir parameters and uncertainties associated with them. A three-dimensional (3D) seismic dataset is inverted within a geological and stratigraphic model using the geostatistical inversion technique. Several reservoir-scale acoustic impedance blocks are obtained and quantification of uncertainty is determined by computing statistics on these 3D blocks. Combining these statistics with the kriging of the reservoir parameter well logs allows the transformation of impedances into reservoir parameters. This combination is similar to performing a collocated cokriging of the acoustic impedances. Introduction Our geostatistical inversion approach is used to invert seismic traces within a geological and stratigraphic model. At each seismic trace location, a large number of acoustic impedance (AI) traces are generated by conditional simulation, and a local objective function is minimized to find the trace that best fits the actual seismic trace. Several three-dimensional (3D) AI realizations are obtained, all of which are constrained by both the well logs and seismic data. Statistics are then computed in each stratigraphic cell of the 3D results to quantify the nonuniqueness of the solution and to summarize the information provided by individual realizations. Finally, AI are transformed into other reservoir parameters such as Vshale through a statistical petrophysical relationship. This transformation is used to map Vshale between wells, by combining information derived from Vshale logs with information derived from AI blocks. The final block(s) can then be mapped from the time to the depth domain and used for building the flow simulation models or for defining reservoir characterization maps (e.g., net to gross, hydrocarbon pore volume). We illustrate the geostatistical inversion method with results from an actual case study. The construction of the a-priori model in time, the inversion, and the final reservoir parameters in depth are described. These results show the benefit of a multidisciplinary approach, and illustrate how the geostatistical inversion method provides clear quantification of uncertainties affecting the modeling of reservoir properties between wells. Methodology The Geostatistical Inversion Approach. This methodology was introduced by Bortoli et al.1 and Haas and Dubrule.2 It is also discussed in Dubrule et al.3 and Rowbotham et al.4 Its application on a synthetic case is described in Dubrule et al.5 A brief review of the method will be presented here, emphasizing how seismic data and well logs are incorporated into the inversion process. The first step is to build a geological model of the reservoir in seismic time. Surfaces are derived from sets of picks defining the interpreted seismic. These surfaces are important sincethey delineate the main layers of the reservoir and, as we will see below, the statistical model associated with these layers, andthey control the 3D stratigraphic grid construction. The structure of this grid (onlap, eroded, or proportional) depends on the geological context. The maximum vertical discretization may be higher than that of the seismic, typically from 1 to 4 milliseconds. The horizontal discretization is equal to the number of seismic traces to invert in each direction (one trace per cell in map view). Raw AI logs at the wells have to be located within this stratigraphic grid since they will be used as conditioning data during the inversion process. It is essential that well logs should be properly calibrated with the seismic. This implies that a representative seismic wavelet has been matched to the wells, by comparing the convolved reflectivity well log response with the seismic response at the same location. This issue is described more fully in Rowbotham et al.4 Geostatistical parameters are determined by using both the wells and seismic data. Lateral variograms are computed from the seismic mapped into the stratigraphic grid. Well logs are used to both give an a priori model (AI mean and standard deviation) per stratum and to compute vertical variograms. The geostatistical inversion process can then be started. A random path is followed by the simulation procedure, and at each randomly drawn trace location AI trace values can be generated by sequential Gaussian simulation (SGS). A large number of AI traces are generated at the same location and the corresponding reflectivities are calculated. After convolution with the wavelet, the AI trace that leads to the best fit with the actual seismic is kept and merged with the wells and the previously simulated AI traces. The 3D block is therefore filled sequentially, trace after trace (see Fig. 1). It is possible to ignore the seismic data in the simulation process by generating only one trace at any (X, Y) location and automatically keeping it as "the best one." In this case, realizations are only constrained by the wells and the geostatistical model (a-priori parameters and variograms).


2020 ◽  
Vol 39 (3) ◽  
pp. 176-181
Author(s):  
Jun Liu ◽  
Donghai Liang ◽  
Guangrong Peng ◽  
Xiaomin Ruan ◽  
Yingwei Li ◽  
...  

In the Enping 17 sag within the Pearl River Mouth Basin in the South China Sea, one wildcat well has been drilled to the Lower Paleogene Enping Formation (FM EP) and partially into the Wenchang Formation (FM WC) for deep formation hydrocarbon exploration. However, no commercial play was discovered. The reasons for this are clear if the petroleum systems modeling is examined. In FM EP, the main reason for failure is due to poor sealing. In FM WC, the failure is due to the lack of a good reservoir for hydrocarbon accumulation. Encountering a 9 m thick reservoir at a depth of 4650 m indicates that braided fluvial delta and lowstand turbidite sandstone may develop in FM WC. With the objective of establishing cap rock in FM EP and reservoir rock in FM WC, and in the absence of sufficient well data, an integrated framework for 3D seismic reservoir characterization of offshore deep and thin layers was developed. The workflow includes seismic data reprocessing, well-log-based rock-physics analysis, seismic structure interpretation, simultaneous amplitude variation with offset (AVO) inversion, 3D lithology prediction, and geologic integrated analysis. We present four key solutions to address four specific challenges in this case study: (1) the application of adaptive deghosting techniques to remove the source and streamer depth-related ghost notches in the seismic data bandwidth and the relative amplitude-preserved bandwidth extension technique to improve the seismic data resolution; (2) a practical rock-physics modeling approach to consider the formation overpressure for pseudoshear sonic log prediction; (3) interactive and synchronized workflow between prestack 3D AVO inversion and seismic processing to predict a 9 m thick layer in FM WC through more than 60 rounds of cyclic tests; and (4) cross validation between seismic qualitative attributes and quantitative inversion results to verify the lithology prediction result under the condition of insufficient well data.


Sign in / Sign up

Export Citation Format

Share Document