Seismic Soundoff

2020 ◽  
Vol 39 (3) ◽  
pp. 224-224
Author(s):  
Andrew Geary

The following is an excerpt from SEG's podcast, Seismic Soundoff. In this episode, host Andrew Geary speaks with John Etgen, Virgil Kauffman Gold Medal winner and 2019 SEG Distinguished Lecturer. Etgen and Geary have an engaging and multifaceted conversation on the current capabilities of depth imaging, the limitations of full-waveform inversion, and more. This episode is proudly sponsored by ION Geophysical. Listen to the full episode at https://seg.org/podcast/post/7104 .

2019 ◽  
Vol 38 (3) ◽  
pp. 220-225
Author(s):  
Laurence Letki ◽  
Mike Saunders ◽  
Monica Hoppe ◽  
Milos Cvetkovic ◽  
Lewis Goss ◽  
...  

The Argentina Austral Malvinas survey comprises 13,784 km of 2D data extending from the shelf to the border with the Falkland Islands. The survey was acquired using a 12,000 m streamer and continuous recording technology and was processed through a comprehensive broadband prestack depth migration workflow focused on producing a high-resolution, high-fidelity data set. Source- and receiver-side deghosting to maximize the bandwidth of the data was an essential ingredient in the preprocessing. Following the broadband processing sequence, a depth-imaging workflow was implemented, with the initial model built using a time tomography approach. Several passes of anisotropic reflection tomography provided a significant improvement in the velocity model prior to full-waveform inversion (FWI). Using long offsets, FWI made use of additional information contained in the recorded wavefield, including the refracted and diving wave energy. FWI resolved more detailed velocity variations both in the shallow and deeper section and culminated in an improved seismic image.


2021 ◽  
Author(s):  
Brij Singh ◽  
Michał Malinowski ◽  
Andrzej Górszczyk ◽  
Alireza Malehmir ◽  
Stefan Buske ◽  
...  

Abstract. A sparse 3D seismic survey was acquired over the Blötberget iron-oxide deposits of the Ludvika Mines in south-central Sweden. The main aim of the survey was to delineate the deeper extension of the mineralisation and to better understand its 3D nature and associated fault systems for mine planning purposes. To obtain a high-quality seismic image in depth, we applied time-domain 3D acoustic full-waveform inversion (FWI) to build a high-resolution P-wave velocity model. This model was subsequently used for pre-stack depth imaging with reverse time migration (RTM) to produce the complementary reflectivity section. We developed a data preprocessing workflow and inversion strategy for the successful implementation of FWI in the hardrock environment. We obtained a high-fidelity velocity model using FWI and assessed its robustness. We extensively tested and optimised the parameters associated with the RTM method for subsequent depth imaging using different velocity models: a constant velocity model, a model built using first-arrival traveltime tomography and a velocity model derived by FWI. We compare our RTM results with a priori data available in the area. We conclude that, from all tested velocity models, the FWI velocity model in combination with the subsequent RTM step, provided the most focussed image of the mineralisation and we successfully mapped its 3D geometrical nature. In particular, a major reflector interpreted as a cross-cutting fault, which is restricting the deeper extension of the mineralisation with depth, and several other fault structures which were earlier not imaged were also delineated. We believe that a thorough analysis of the depth images derived with the combined FWIRTM approach that we presented here can provide more details which will help with better estimation of areas with high mineralization, better mine planning and safety measures.


Sign in / Sign up

Export Citation Format

Share Document