High-resolution depth imaging of long-offset 2D data using full-waveform inversion: The Malvinas Basin, Argentina

2019 ◽  
Vol 38 (3) ◽  
pp. 220-225
Author(s):  
Laurence Letki ◽  
Mike Saunders ◽  
Monica Hoppe ◽  
Milos Cvetkovic ◽  
Lewis Goss ◽  
...  

The Argentina Austral Malvinas survey comprises 13,784 km of 2D data extending from the shelf to the border with the Falkland Islands. The survey was acquired using a 12,000 m streamer and continuous recording technology and was processed through a comprehensive broadband prestack depth migration workflow focused on producing a high-resolution, high-fidelity data set. Source- and receiver-side deghosting to maximize the bandwidth of the data was an essential ingredient in the preprocessing. Following the broadband processing sequence, a depth-imaging workflow was implemented, with the initial model built using a time tomography approach. Several passes of anisotropic reflection tomography provided a significant improvement in the velocity model prior to full-waveform inversion (FWI). Using long offsets, FWI made use of additional information contained in the recorded wavefield, including the refracted and diving wave energy. FWI resolved more detailed velocity variations both in the shallow and deeper section and culminated in an improved seismic image.

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


2016 ◽  
Vol 4 (4) ◽  
pp. SU17-SU24 ◽  
Author(s):  
Vanessa Goh ◽  
Kjetil Halleland ◽  
René-Édouard Plessix ◽  
Alexandre Stopin

Reducing velocity inaccuracy in complex settings is of paramount importance for limiting structural uncertainties, therefore helping the geologic interpretation and reservoir characterization. Shallow velocity variations due, for instance, to gas accumulations or carbonate reefs, are a common issue offshore Malaysia. These velocity variations are difficult to image through standard reflection-based velocity model building. We have applied full-waveform inversion (FWI) to better characterize the upper part of the earth model for a shallow-water field, located in the Central Luconia Basin offshore Sarawak. We have inverted a narrow-azimuth data set with a maximum inline offset of 4.4 km. Thanks to dedicated broadband preprocessing of the data set, we could enhance the signal-to-noise ratio in the 2.5–10 Hz frequency band. We then applied a multiparameter FWI to estimate the background normal moveout velocity and the [Formula: see text]-parameter. Full-waveform inversion together with broadband data processing has helped to better define the faults and resolve the thin layers in the shallow clastic section. The improvements in the velocity model brought by FWI lead to an improved image of the structural closure and flanks. Moreover, the increased velocity resolution helps in distinguishing between two different geologic interpretations.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Katherine Flórez ◽  
Sergio Alberto Abreo Carrillo ◽  
Ana Beatriz Ramírez Silva

Full Waveform Inversion (FWI) schemes are gradually becoming more common in the oil and gas industry, as a new tool for studying complex geological zones, based on their reliability for estimating velocity models. FWI is a non-linear inversion method that iteratively estimates subsurface characteristics such as seismic velocity, starting from an initial velocity model and the preconditioned data acquired. Blended sources have been used in marine seismic acquisitions to reduce acquisition costs, reducing the number of times that the vessel needs to cross the exploration delineation trajectory. When blended or simultaneous without previous de-blending or separation, stage data are used in the reconstruction of the velocity model with the FWI method, and the computational time is reduced. However, blended data implies overlapping single shot-gathers, producing interference that affects the result of seismic approaches, such as FWI or seismic image migration. In this document, an encoding strategy is developed, which reduces the overlap areas within the blended data to improve the final velocity model with the FWI method.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R37-R46 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

Full waveform inversion is a method used to recover subsurface parameters, and it requires heavy computational resources. We present a cyclic shot subsampling method to make the full waveform inversion efficient while maintaining the quality of the inversion results. The cyclic method subsamples the shots at a regular interval and changes the shot subset at each iteration step. Using this method, we can suppress the aliasing noise present in regular-interval subsampling. We compared the cyclic method with divide-and-conquer, random, and random-in-each-subgroup subsampling methods using the Laplace-domain full waveform inversion. We found examples of a 2D marine field data set from the Gulf of Mexico and a 3D synthetic salt velocity model. In the inversion examples using the subsampling methods, we could reduce the computation time and obtain results comparable to that without a subsampling technique. The cyclic method and two random subsampling methods yielded similar results; however, the cyclic method generated the best results, especially when the number of shot subsamples was small, as expected. We also examined the effect of subsample updating frequency. The updating frequency does not have a significant effect on the results when the number of subsamples is large. In contrast, frequent subsample updating becomes important when the number of subsamples is small. The random-in-each-subgroup scheme showed the best results if we did not update the subsamples frequently, while the cyclic method suffers from aliasing. The results suggested that the cyclic subsampling scheme can be an alternative to the random schemes and the distributed subsampling schemes with a frequently changing subset are better than lumped subsampling schemes.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R59-R80 ◽  
Author(s):  
Michael Warner ◽  
Andrew Ratcliffe ◽  
Tenice Nangoo ◽  
Joanna Morgan ◽  
Adrian Umpleby ◽  
...  

We have developed and implemented a robust and practical scheme for anisotropic 3D acoustic full-waveform inversion (FWI). We demonstrate this scheme on a field data set, applying it to a 4C ocean-bottom survey over the Tommeliten Alpha field in the North Sea. This shallow-water data set provides good azimuthal coverage to offsets of 7 km, with reduced coverage to a maximum offset of about 11 km. The reservoir lies at the crest of a high-velocity antiformal chalk section, overlain by about 3000 m of clastics within which a low-velocity gas cloud produces a seismic obscured area. We inverted only the hydrophone data, and we retained free-surface multiples and ghosts within the field data. We invert in six narrow frequency bands, in the range 3 to 6.5 Hz. At each iteration, we selected only a subset of sources, using a different subset at each iteration; this strategy is more efficient than inverting all the data every iteration. Our starting velocity model was obtained using standard PSDM model building including anisotropic reflection tomography, and contained epsilon values as high as 20%. The final FWI velocity model shows a network of shallow high-velocity channels that match similar features in the reflection data. Deeper in the section, the FWI velocity model reveals a sharper and more-intense low-velocity region associated with the gas cloud in which low-velocity fingers match the location of gas-filled faults visible in the reflection data. The resulting velocity model provides a better match to well logs, and better flattens common-image gathers, than does the starting model. Reverse-time migration, using the FWI velocity model, provides significant uplift to the migrated image, simplifying the planform of the reservoir section at depth. The workflows, inversion strategy, and algorithms that we have used have broad application to invert a wide-range of analogous data sets.


2020 ◽  
Author(s):  
Bhargav Boddupalli ◽  
Tim Minshull ◽  
Joanna Morgan ◽  
Gaye Bayrakci

<p>Imaging of hyperextended zone and exhumed continental mantle rocks can improve our understanding of the tectonics of the final stages of rifting. In the Deep Galicia margin, the upper and lower crust are coupled allowing the normal faults to cut through the brittle crust and penetrate to the mantle leading to serpentinization of the mantle. Localized extensional forces caused extreme thinning and elongation of crystalline continental crust causing the continental blocks to slip over a lithospheric-scale detachment fault called the S-reflector.  </p><p>A high-resolution velocity model obtained using seismic full waveform inversion gives us deeper insights into the rifting process. In this study, we present results from three dimensional acoustic full waveform inversion performed using wide-angle seismic data acquired in the deep water environments of the Deep Galicia margin using ocean bottom seismometers. We performed full waveform inversion in the time domain, starting with a velocity model obtained using travel-time tomography, of dimensions 78.5 km x 22.1 km and depth 12 km. The high-resolution modelling shows short-wavelength variations in the velocity, adding details to the travel-time model. We superimposed our final model, converted to two-way time, on pre-stack time-migrated three-dimensional reflection data from the same survey. Compared to the starting model, our model shows improved alignment of the velocity variations along the steeply dipping normal faults and a sharp velocity contrast across the S-reflector. We validated our result using checkerboard tests, by tracking changes in phases of the first arrivals during the inversion and by comparing the observed and the synthetic waveforms. We observe a clear evidence for preferential serpentinization (45 %) of the mantle with lower velocities in the mantle correlating with the fault intersections with the S-reflector.</p>


Sign in / Sign up

Export Citation Format

Share Document