scholarly journals A VARIATIONAL APPROACH FOR A PROBLEM INVOLVING A ψ-HILFER FRACTIONAL OPERATOR

2021 ◽  
Vol 11 (3) ◽  
pp. 1610-1630
Author(s):  
J. Vanterler da C. Sousa ◽  
◽  
Leandro S. Tavares ◽  
César E. Torres Ledesma ◽  
◽  
...  
Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2020 ◽  
Vol 23 (3) ◽  
pp. 723-752 ◽  
Author(s):  
Alessio Fiscella ◽  
Patrizia Pucci

AbstractThis paper deals with the existence of nontrivial solutions for critical possibly degenerate Kirchhoff fractional (p, q) systems. For clarity, the results are first presented in the scalar case, and then extended into the vectorial framework. The main features and novelty of the paper are the (p, q) growth of the fractional operator, the double lack of compactness as well as the fact that the systems can be degenerate. As far as we know the results are new even in the scalar case and when the Kirchhoff model considered is non–degenerate.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

AbstractThis study is aimed to investigate the sufficient conditions of the existence of unique solutions and the Ulam–Hyers–Mittag-Leffler (UHML) stability for a tripled system of weighted generalized Caputo fractional derivatives investigated by Jarad et al. (Fractals 28:2040011 2020) in the frame of Chebyshev and Bielecki norms with time delay. The acquired results are obtained by using Banach fixed point theorems and the Picard operator (PO) method. Finally, a pertinent example of the results obtained is demonstrated.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


Author(s):  
Philipp Junker ◽  
Daniel Balzani

AbstractWe present a novel approach to topology optimization based on thermodynamic extremal principles. This approach comprises three advantages: (1) it is valid for arbitrary hyperelastic material formulations while avoiding artificial procedures that were necessary in our previous approaches for topology optimization based on thermodynamic principles; (2) the important constraints of bounded relative density and total structure volume are fulfilled analytically which simplifies the numerical implementation significantly; (3) it possesses a mathematical structure that allows for a variety of numerical procedures to solve the problem of topology optimization without distinct optimization routines. We present a detailed model derivation including the chosen numerical discretization and show the validity of the approach by simulating two boundary value problems with large deformations.


Sign in / Sign up

Export Citation Format

Share Document