Cyclin D1 Overexpression Permits the Reproducible Detection of Senescent Human Vascular Smooth Muscle Cells

2007 ◽  
Vol 1119 (1) ◽  
pp. 20-31 ◽  
Author(s):  
D. G. A. BURTON ◽  
A. N. SHEERIN ◽  
E. L. OSTLER ◽  
K. SMITH ◽  
P. J. GILES ◽  
...  
2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Venkatesh Kundumani-Sridharan ◽  
Dong Van Quyen ◽  
Jaganathan Subramani ◽  
Nikhlesh K Singh ◽  
Gadiparthi N Rao

2003 ◽  
Vol 178 (2) ◽  
pp. 319-329 ◽  
Author(s):  
K Takahashi ◽  
M Ohmichi ◽  
M Yoshida ◽  
K Hisamoto ◽  
S Mabuchi ◽  
...  

The proliferation of vascular smooth muscle cells (VSMC) is a crucial pathophysiological process in the development of atherosclerosis. Although estrogen is known to inhibit the proliferation of VSMC, the mechanism responsible for this effect remains to be elucidated. In addition, the effect of raloxifene on VSMC remains unknown. We have shown here that 17beta-estradiol (E(2)) and raloxifene significantly inhibited the platelet-derived growth factor (PDGF)-stimulated proliferation of cultured human VSMC. Flow cytometry demonstrated that PDGF-stimulated S-phase progression of the cell cycle in VSMC was also suppressed by E(2) or raloxifene. We found that PDGF-induced phosphorylation of retinoblastoma protein (pRb), whose hyperphosphorylation is a hallmark of the G1-S transition in the cell cycle, was significantly inhibited by E(2) and raloxifene. These effects were associated with a decrease in cyclin D1 expression, without a change in cyclin-dependent kinase 4 or cyclin-dependent kinase inhibitor, p27(kip1) expression. ICI 182,780 abolished the inhibitory effects of E(2) and raloxifene on PDGF-induced pRb phosphorylation. Next, we examined which estrogen receptor (ER) is necessary for these effects of E(2) and raloxifene. Since VSMC express both ERalpha and ERbeta, A10, a rat aortic smooth muscle cell line that expresses ERbeta but not ERalpha, was used. The dose-dependent stimulation of A10 cell proliferation by PDGF was not inhibited by E(2) or raloxifene in contrast to the results obtained in VSMC. Moreover, E(2) and raloxifene significantly inhibited the PDGF-induced cyclin D1 promoter activity in A10 cells transfected with cDNA for ERalpha but not in the parental cells. These results suggested that E(2) and raloxifene exert an antiproliferative effect in VSMC treated with PDGF, at least in part through inhibition of pRb phosphorylation, and that the inhibitory effects of E(2) and raloxifene may be mainly mediated by ERalpha.


2014 ◽  
Vol 115 (10) ◽  
pp. 1752-1761 ◽  
Author(s):  
Myung-Hyun Kim ◽  
Onju Ham ◽  
Se-Yeon Lee ◽  
Eunmi Choi ◽  
Chang Youn Lee ◽  
...  

2012 ◽  
Vol 303 (8) ◽  
pp. F1136-F1144 ◽  
Author(s):  
Julio M. Martínez-Moreno ◽  
Juan R. Muñoz-Castañeda ◽  
Carmen Herencia ◽  
Addy Montes de Oca ◽  
Jose C. Estepa ◽  
...  

The present study investigates the differential effect of two vitamin D receptor agonists, calcitriol and paricalcitol, on human aortic smooth muscle cells calcification in vitro. Human vascular smooth muscle cells were incubated in a high phosphate (HP) medium alone or supplemented with either calcitriol 10−8M (HP + CTR) or paricalcitol 3·10−8 M (HP + PC). HP medium induced calcification, which was associated with the upregulation of mRNA expression of osteogenic factors such as bone morphogenetic protein 2 (BMP2), Runx2/Cbfa1, Msx2, and osteocalcin. In these cells, activation of Wnt/β-catenin signaling was evidenced by the translocation of β-catenin into the nucleus and the increase in the expression of direct target genes as cyclin D1, axin 2, and VCAN/versican. Addition of calcitriol to HP medium (HP + CTR) further increased calcification and also enhanced the expression of osteogenic factors together with a significant elevation of nuclear β-catenin levels and the expression of cyclin D1, axin 2, and VCAN. By contrast, the addition of paricalcitol (HP + PC) not only reduced calcification but also downregulated the expression of BMP2 and other osteoblastic phenotype markers as well as the levels of nuclear β-catenin and the expression of its target genes. The role of Wnt/β-catenin on phosphate- and calcitriol-induced calcification was further demonstrated by the inhibition of calcification after addition of Dickkopf-related protein 1 (DKK-1), a specific natural antagonist of the Wnt/β-catenin signaling pathway. In conclusion, the differential effect of calcitriol and paricalcitol on vascular calcification appears to be mediated by a distinct regulation of the BMP and Wnt/β-catenin signaling pathways.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Myung-Hyun Kim ◽  
Onju Ham ◽  
Se-Yeon Lee ◽  
Eunmi Choi ◽  
Chang Yeon Lee ◽  
...  

Background: Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of disease progression in atherosclerosis. Cell proliferation is regulated by cell cycle regulatory proteins. MicroRNAs (miRNAs) have been reported to act as important gene regulators and play essential roles in the proliferation and migration of VSMCs in cardiovascular disease. However, the roles and mechanisms of miRNAs in VSMCs and neointimal formation are far from being fully understood. Methods & Results: In this study, cell cycle specific cyclin D1 was found to be a potential target of miR-365 by direct binding. Through an in vitro experiment, we showed that exogenous miR-365 overexpression reduced VSMC proliferation and proliferating cell nuclear antigen (PCNA) expression, while miR-365 was observed to block G1/S transition in platelet-derived growth factor (PDGF)-induced VSMCs. In addition, the proliferation of VSMCs by various stimuli, including PDGF, angiotensin II (Ang II), and serum, led to the downregulation of miR-365 expression levels. The expression of miR-365 was confirmed in balloon injured carotid arteries. Taken together, our results suggest an anti-proliferative role for miR-365 in VSMC proliferation, at least partly via modulating the expression of cyclin D1. Conclusions: Therefore, miR-365 may influence neointimal formation in atherosclerosis patients.


Sign in / Sign up

Export Citation Format

Share Document