Phase I dose-finding and pharmacokinetic study of a combination of elisidepsin (E) and erlotinib (T) in patients (pts) with advanced solid tumors.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 3093-3093
Author(s):  
Sanjay Goel ◽  
Teresa Moran ◽  
Cinthya Coronado ◽  
Santiago Viteri Ramirez ◽  
Imran Chaudhary ◽  
...  

3093 Background: E is a new marine compound that has shown synergism with T in vitro even in T-resistant non-small-cell lung cancer (NSCLC) cell lines. Based on these findings, a phase I clinical trial was undertaken to identify the maximum tolerated dose (MTD) and recommended dose (RD) of E (3-h iv, days 1, 8 and 15) followed by T (once daily) in 3-week cycles. Secondary objectives were evaluation of safety and feasibility, PK and preliminary efficacy results. Methods: Patients (pts) with advanced solid tumors with no standard therapeutic option were recruited. Cohorts of 3-6 pts were included at each dose level (DL), with escalating doses of E in increments of 25-50% according to toxicities, and 2 different T doses (100 and 150 mg/day). Results: Thirty pts (median age, 57 years; 19 females) were evaluable. Main tumor types included NSCLC, colorectal, melanoma, and ovarian cancer. Six DLs were assessed. Starting DL was E 0.33 mg + T 100mg. One dose-limiting toxicity (DLT) out of 6 pts (grade 3 bilirubin increase) was observed at DL3 (E 0.75 mg + T 150 mg). Another DLT (dose omissions due to ALT increase) was found at DL6 (E 2.25 mg + T 100 mg). Frequent toxicities were diarrhea (53%), nausea (23%), vomiting (33%), rash (47%), pruritus (43%), dry skin (27%) and acneiform dermatitis (17%). Grade 3/4 toxicities included diarrhea (2 pts), rash (2 pts) and pruritus (1 pts). Main biochemical abnormalities were ALT (grade 3/4 in 4 pts) and total bilirubin increase (grade 3 in 2 pts). No severe hematological abnormalities were observed. Most toxicities were related to T; therefore, T dose was reduced to 100 mg/day. No PK interaction between E and T was observed. No objective responses were reported. Six pts attained stable disease >3 months (3 NSCLC; 1 ovarian cancer, 1 colorectal cancer, 1 invasive thymoma). Conclusions: E + T was a manageable combination; however, the difficulty of combining E with the standard dose of T (150mg) and the lack of activity made this combination unattractive for further development in the current schedule. Possibly, other schedules may demonstrate more efficacy.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 2544-2544
Author(s):  
Suzanne Fields Jones ◽  
Carla Kurkjian ◽  
Manish R. Patel ◽  
Jeffrey R. Infante ◽  
Howard A. Burris ◽  
...  

2544 Background: C-Met protein is a receptor tyrosine kinase which is overexpressed or mutated in a variety of tumor types, causing cell proliferation, metastasis, and angiogenesis. Tivantinib is an orally bioavailable small molecule which binds to the c-Met protein. This phase I study was designed to determine the maximum tolerated dose (MTD) of tivantinib in combination with standard dose FOLFOX for the treatment of patients with advanced solid tumors. Methods: Patients with advanced solid tumors for which FOLFOX (5-FU IV 400 mg/m2 day 1; 5-FU CIV 2400 mg/m2 day 1; Leucovorin IV 400 mg/m2 day 1; Oxaliplatin IV 85 mg/m2 day 1) would be appropriate chemotherapy received escalating doses of tivantinib BID (days 1-14) in a standard 3 + 3 design. Dose-limiting toxicities (DLTs), non-dose-limiting toxicities (NDLTs), safety, and preliminary efficacy were evaluated. Results: Fourteen patients (50% colorectal) were treated across 3 dose levels: 120 mg (n=3); 240 mg (n=5); 360 mg (n=6). No DLTs were observed until the 3rd dose level (treatment delay ≥3 days, secondary to grade 3 neutropenia). Common related adverse events (% grade 1/2; % grade 3/4) included: diarrhea (36%; 0%), neutropenia (0%; 29%), nausea (14%; 14%), vomiting (14%; 14%), dehydration (14%; 7%), and thrombocytopenia (14%; 0%). To date, 7 patients have been evaluated for response including 4 (57%) with stable disease evident at the 8-week evaluation (CRC, 2 patients; unknown primary favoring CRC, 1 patient; esophageal, 1 patient) and 3 (21%) with disease progression. The 4 patients with stable disease are continuing on treatment; three (CRC and unknown primary) had received prior FOLFOX. Conclusions: The addition of tivantinib to standard therapy FOLFOX appears tolerated up to its recommended phase II monotherapy dose of 360 mg. Preliminary efficacy is encouraging, and a phase II study is proceeding with this regimen for the first line treatment of advanced gastroesophageal patients. Clinical trial information: NCT01611857.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 475-475
Author(s):  
Johanna C. Bendell ◽  
Lowell L. Hart ◽  
Shubham Pant ◽  
Jeffrey R. Infante ◽  
Suzanne Fields Jones ◽  
...  

475 Background: Heat shock protein 90 (HSP90) is a molecular chaperone involved in the maintenance and function of client proteins, many of which are integral to key oncogenic processes. AUY922 is a competitive inhibitor of HSP90, with demonstrated activity in a variety of preclinical models. Further preclinical evidence suggests potential synergy between inhibition of HSP90 and fluorouracil treatment (Burkitt et al. 2007). This phase I study was designed to determine the maximum tolerated dose (MTD) of AUY922 in combination with standard dose of capecitabine as treatment for patients with advanced solid tumors. Methods: Patients with refractory solid tumors for which capecitabine was an appropriate therapy received AUY922 with capecitabine in a standard 3+3 dose escalation. Capecitabine 1000mg/m2 was administered twice daily for days 1-14 of 21-day cycles, with escalating doses of AUY922 administered by intravenous (IV) infusion on days 1, 8, and 15; the 6th dose level combined the MTD of AUY922 with capecitabine 1250mg/m2. Dose-limiting toxicities (DLTs), safety, and efficacy were evaluated. Results: 23 patients were treated at 6 dose levels: 22mg/m2 (n = 3); 28mg/m2 (n = 3); 40mg/m2 (n = 3); 55mg/m2 (n = 5); 70mg/m2 (n = 3); 70mg/m2 with capecitabine 1250mg/m2 (n = 6). There were no DLTs observed until the 6th dose level (grade 3 diarrhea). Common adverse events (all grades) included: diarrhea (61%), nausea (57%), fatigue (43%), hand-foot skin reaction (39%), anorexia (39%), vomiting (35%), rash (30%), and darkening vision (22%). Myelosuppression was uncommon, with no instances of grade ≥3 thrombocytopenia, and only 2 patients (9%) with grade 3/4 neutropenia (1 patient each). Of the 19 patients evaluable for response per RECIST 1.1, unconfirmed partial response (PR) was noted in 3 patients (13%; colorectal, 1; breast, 1; stomach, 1), with 1 additional confirmed PR (4%; colorectal); two of these had progressed on prior fluorouracil. Stable disease was noted in 8 patients (35%). Conclusions: The addition of AUY922 to standard dose capecitabine was well-tolerated at doses of up to 70mg/m2. Preliminary efficacy is encouraging, and warrants further investigation of this regimen. Clinical trial information: NCT01226732.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3564-3564
Author(s):  
Shubham Pant ◽  
Lowell L. Hart ◽  
Johanna C. Bendell ◽  
Jeffrey R. Infante ◽  
Suzanne Fields Jones ◽  
...  

3564 Background: Heat shock protein 90 (HSP90) is a molecular chaperone involved in the maintenance and function of client proteins, many of which are integral to key oncogenic processes. AUY922 is a competitive inhibitor of HSP90. Preclinical evidence suggests potential synergy between HSP90 inhibition and fluorouracil. This phase I study was designed to determine the maximum tolerated dose (MTD) of AUY922 in combination with standard dose of capecitabine as treatment for patients with advanced solid tumors. Methods: Pts with refractory solid tumors received AUY922 with capecitabine in a standard 3+3 dose escalation. Dose levels were capecitabine 1000mg/m2 PO BID d 1-14 of 21-day cycles, with escalating doses of AUY922 IV days 1, 8, and 15; the 6th dose level combined the MTD of AUY922 with capecitabine 1250mg/m2. Dose-limiting toxicities (DLTs), safety, and efficacy were evaluated. Results: 23 pts were treated at 6 dose levels: 22mg/m2 (n = 3); 28mg/m2 (n = 3); 40mg/m2 (n = 3); 55mg/m2 (n = 5); 70mg/m2 (n = 3); 70mg/m2 with capecitabine 1250mg/m2 (n= 6). No DLTs were observed until the 6th dose level (grade 3 diarrhea). Related adverse events (% grade 1/2; % grade 3/4) included: diarrhea (43%; 17%), fatigue (30%; 13%), nausea (39%; 0), hand-foot skin reaction (30%; 5%), anorexia (30%; 4%), vomiting (30%; 0), and darkening vision (26%; 0). Vision darkening, a class effect of HSP90 inhibitors, was reversible with drug hold and retreatment was possible. Two pts (9%) had hematologic G 3/4 events of neutropenia. Of the 19 pts evaluable for response, partial response was noted in 4 patients (colorectal, 2; breast, 1; stomach, 1); 2 had progressed on prior fluorouracil, and remained on treatment for 13-35 wks. Stable disease was noted in 8 pts (35% [colorectal, 5; pancreas, 2; breast, 1]) with a median duration of 25.5 wks (range: 11-44+). All 5 colorectal pts were refractory to 5-FU. Conclusions: The addition of AUY922 to standard dose capecitabine was well-tolerated at doses of up to 70mg/m2. Preliminary efficacy is encouraging, particularly as seen in pts previously resistant to fluorouracil, and warrants further investigation of this regimen. Clinical trial information: NCT01226732.


2000 ◽  
Vol 18 (20) ◽  
pp. 3545-3552 ◽  
Author(s):  
Corinne Couteau ◽  
Marie-Laure Risse ◽  
Michel Ducreux ◽  
Florence Lefresne-Soulas ◽  
Alessandro Riva ◽  
...  

PURPOSE: We conducted a phase I and pharmacokinetic study of docetaxel in combination with irinotecan to determine the dose-limiting toxicity (DLT), the maximum-tolerated dose (MTD), and the dose at which at least 50% of the patients experienced a DLT during the first cycle, and to evaluate the safety and pharmacokinetic profiles in patients with advanced solid tumors. PATIENTS AND METHODS: Patients with only one prior chemotherapy treatment (without taxanes or topoisomerase I inhibitors) for advanced disease were included in the study. Docetaxel was administered as a 1-hour IV infusion after premedication with corticosteroids followed immediately by irinotecan as a 90-minute IV infusion, every 3 weeks. No hematologic growth factors were allowed. RESULTS: Forty patients were entered through the following seven dose levels (docetaxel/irinotecan): 40/140 mg/m2, 50/175 mg/m2, 60/210 mg/m2, 60/250 mg/m2, 60/275 mg/m2, 60/300 mg/m2, and 70/250 mg/m2. Two hundred cycles were administered. Two MTDs were determined, 70/250 mg/m2 and 60/300 mg/m2; the DLTs were febrile neutropenia and diarrhea. Neutropenia was the main hematologic toxicity, with 85% of patients experiencing grade 4 neutropenia. Grade 3/4 nonhematologic toxicities in patients included late diarrhea (7.5%), asthenia (15.0%), febrile neutropenia (22.5%), infection (7.5%), and nausea (5.0%). Pharmacokinetics of both docetaxel and irinotecan were not modified with the administration schedule of this study. CONCLUSION: The recommended dose of docetaxel in combination with irinotecan is 60/275 mg/m2, respectively. At this dose level, the safety profile is manageable. The activity of this combination should be evaluated in phase II studies in different tumor types.


1997 ◽  
Vol 15 (1) ◽  
pp. 187-192 ◽  
Author(s):  
D Fennelly ◽  
C Aghajanian ◽  
F Shapiro ◽  
C O'Flaherty ◽  
M McKenzie ◽  
...  

PURPOSE Paclitaxel has shown significant activity in advanced ovarian cancer. In vitro studies with paclitaxel have suggested that fractionated brief infusion schedules may be more effective than the standard 24-hour infusion. We commenced a phase I evaluation of escalating-dose paclitaxel (40, 50, 60, 80, 100 mg/m2) administered weekly as a 1-hour infusion in patients with recurrent ovarian cancer. All patients had received prior paclitaxel and cisplatin therapy. All patients received standard premedication. PATIENTS AND METHODS Eighteen patients are assessable on this phase I study. The mean age was 54 years (range, 48 to 74). The median number of prior chemotherapy regimens was three (range, two to five). The mean paclitaxel-free interval was 10.1 months (range, 1 to 24). RESULTS A total of 194 cycles of therapy were administered, with a mean of 10 (range, one to 12) per patient. No mucositis or grade III neuropathy was seen. Alopecia occurred in one out of 18 assessable patients. The mean neutrophil nadir was 4.0 x 10(9)/L. At the top dose level (100 mg/m2) delivered, dose-intensity was 90.75% of that planned and greater than two fold the standard dose-intensity. Partial responses were seen in four of 13 assessable patients (30%). Two patients with progression of disease on standard three-week paclitaxel schedules switched to a weekly schedule with demonstrated response. Increasing paclitaxel dose correlated with measured area under the curve (AUC) (R2 = .614). Dose-limiting toxicity was reached at 100 mg/m2 with two of three patients experiencing a treatment delay, thus defining a maximum-tolerated dose of 80 mg/m2 in this group of heavily pretreated patients on this weekly schedule. CONCLUSION (1) Paclitaxel administered as a 1-hour infusion is well tolerated; (2) this schedule of administration does not result in cumulative myelosuppression; and (3) this schedule of administration results in dose-intensive paclitaxel delivery with a favorable toxicity profile.


2000 ◽  
Vol 18 (19) ◽  
pp. 3423-3434 ◽  
Author(s):  
J. Nemunaitis ◽  
R. Eager ◽  
T. Twaddell ◽  
A. Corey ◽  
K. Sekar ◽  
...  

PURPOSE: To determine the toxicities, dose-limiting toxicities (DLT), maximum-tolerated dose, and pharmacokinetic profile of emitefur (BOF-A2) in patients with advanced solid tumors. METHODS: This was a phase I dose-escalating trial in which cohorts of patients received BOF-A2 (cohort 1, 300 mg/m2 orally [PO] tid; cohort 2, 200 mg/m2 PO tid; cohort 3, 200 mg/m2 bid; and cohort 4, 250 mg/m2 bid) for 14 consecutive days followed by 1 week of rest (cycle 1). Pharmacokinetics, toxicity, and tumor response were monitored. RESULTS: Nineteen patients received 110 cycles (three patients in cohort 1, three patients in cohort 2, 10 patients in cohort 3, and three patients in cohort 4). DLT (grade 3 stomatitis, diarrhea, leukopenia) was observed in cohorts 1, 2, and 4. Pharmacokinetics indicated that prolonged systemic expression of fluorouracil (5-FU) is maintained after administration of BOF-A2 at a dose of 200 mg bid for 14 days. The mean steady-state concentration of plasma 5-FU was ≥ 24 ng/mL, which was 184-fold greater than the minimum effective cytotoxic concentration in vitro. Lack of variation of 5-FU trough levels within a day at steady-state indicates suppression of circadian variation. One patient in cohort 3 achieved a partial response and five patients maintained stable disease in excess of 6 months. CONCLUSION: BOF-A2 at a dose of 200 mg PO bid for 14 days followed by 7 days of rest is well tolerated. Prolonged exposure to 5-FU above the predicted preclinical minimum effective concentration is maintained, without evidence of circadian variation. Furthermore, evidence of antitumor activity is suggested.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3592-3592 ◽  
Author(s):  
C. Sweeney ◽  
C. Verschraegen ◽  
G. Chiorean ◽  
F. Lee ◽  
S. Jones ◽  
...  

3592 Background: Sunitinib malate (SU) is an oral, multitargeted tyrosine kinase inhibitor of VEGFRs, PDGFRs, KIT, RET, and FLT3, approved internationally for the treatment of advanced RCC and imatinib-resistant or -intolerant GIST. This phase I study assesses the safety, tolerability and pharmacokinetics (PK) of SU in combination with capecitabine (C). Methods: Pts with advanced solid tumors not amenable to curative therapy, previously treated with =2 prior chemotherapy regimens, and ECOG PS =1 were eligible. Prior antiangiogenic therapy was not permitted. Three SU schedules were evaluated: 4 wks on treatment followed by 2 wks off in 6-wk cycles (4/2 schedule); 2 wks on followed by 1 wk off in 3-wk cycles (2/1 schedule), and continuous dosing (CD schedule). In all cases C was administered orally bid on days 1–14. SU and C doses were alternately escalated in serial pt cohorts to determine the maximum tolerated dose (MTD) of SU for all schedules using a standard 3 + 3 design. PK and antitumor efficacy were also assessed. Results: A total of 50 pts have been enrolled; 28 pts have been treated on the 4/2 schedule: SU 50 mg + C 1,000 mg/m2, and SU 37.5 mg + C 1,250 mg/m2 were not tolerated. Dose limiting toxicities (DLTs) included: grade 3 myalgia (n=1), grade 3 fatigue (n=2), and grade 3 hand- foot syndrome (n=2). The MTD for the 4/2 schedule was SU 37.5 mg/day + C 1,000 mg/m2. No DLTs nor dose reductions were observed among 9 pts treated at the MTD. Preliminary PK data do not indicate drug-drug interactions between SU and C. 3 pts (1 each with breast cancer, neuroendocrine carcinoma, and thyroid carcinoma) achieved confirmed partial responses. On the 2/1 schedule patients are being accrued to SU 37.5 or 50 mg + C 1,000 mg/m2 and doses of SU 37.5 mg + C 1,000 mg/m2 or SU 25 mg + C 1,250 mg/m2 are being explored on the CD schedule. Conclusions: The combination of SU 37.5 mg/day (4/2 schedule) with C 1,000 mg/m2 in pts with advanced solid tumors appears tolerable. SU may be administered in combination with C with no apparent drug-drug interaction. Subsequent cohorts will define the MTD of SU administered on the 2/1 and CD schedules. Further studies of this combination in breast cancer are warranted. No significant financial relationships to disclose.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 2536-2536
Author(s):  
Tomoya Yokota ◽  
Johanna C. Bendell ◽  
Patricia LoRusso ◽  
Takahiro Tsushima ◽  
Ved Desai ◽  
...  

2536 Background: The aim of this study was to determine the safety, maximum-tolerated dose (MTD), pharmacokinetics (PK), pharmacodynamics (PD) and efficacy of DS-7423, a novel inhibitor of PI3K/mTOR, in US and Japanese population. We further compared toxicities and recommended phase 2 dose (RP2D) of DS-7423 and approved oncology drugs in the two populations. Methods: We conductedparallel, first-in-human studies in US and Japan in patients with advanced solid tumors. We conducted a Pubmed search of pivotal and corresponding phase I studies to compare the RP2D and final approval doses of molecularly targeted agents (MTA) between US and Japan. Results: 69 patients were enrolled (n = 42 from US and n = 27 from Japan). Between populations, the only difference at baseline was body weight (BW) and body mass index (BMI). Dose-limiting toxicities included grade 3 rash (48 mg), grade 3 stomatitis (240 mg), grade 3 lung infection (240 mg), grade 4 hyperglycemia (240mg), grade 3 fatigue (320 mg), and grade 3 dehydration (320mg). The MTD and RP2D was 240 mg/d in both populations. Frequent treatment-related adverse events included diarrhea, fatigue, decreased appetite, rash, and stomatitis. No remarkable difference in AUC and Cmax were observed between populations. Prolonged stable disease was seen in cholangiocarcinoma, thymic cancer, non-small cell lung cancer, squamous cell carcinomas, carcinoid, and sarcoma. DS-7423 demonstrated PD effects on serum glucose, C-peptide and Akt phosphorylation and 18F-FDG uptake in tumors. The final RP2D of 17 MTA approved in US and Japan from 2001 to 2015 was near identical. The approved doses in both regions were identical. Conclusions: Despite differences in BW, BMI, and ethnicity, DS-7423 showed no difference in PK, PD, toxicity or efficacy between populations. We found near identical RP2D in phase I oncology studies and approved doses in pivotal studies. This supports increased international collaboration in the conduct of phase I oncology trials. Clinical trial information: NCT01364844, Japic CTI, 12766.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3027-3027 ◽  
Author(s):  
Nagla Fawzy Abdel Karim ◽  
Imran Ahmad ◽  
Ola Gaber ◽  
Ihab Eldessouki ◽  
Olugbenga Olanrele Olowokure ◽  
...  

3027 Background: Autophagy is a catabolic process triggered in cells during periods of stress to enable their survival. Established tumors utilize autophagy to survive periods of metabolic or hypoxic stress. Inhibition of early stage autophagy can rescue cancer cells, while inhibition of late stage autophagy will lead to cell death due to accumulation of damaged organelles. The antimalarial drugs CQ and HCQ inhibit late phase autophagy. The goal of our study is to assess the safety, tolerability and activity of combining CQ/HCQ with CG in advanced solid tumor patients who either progressed on other therapies or in whom CG is a therapeutic option. Methods: This single institution phase 1 dose-escalation study was designed to evaluate the maximum tolerated dose (MTD) of CQ, later substituted with HCQ, in combination with CG in patients with previously treated advanced solid tumors. Secondary objectives were to determine ORR, PFS and OS. A starting dose of 50 mg of CQ/HCQ was used in conjunction with CG, and increased in increments of 50 mg in each dose cohort. Grade 3 or greater toxicity that is treatment-related, and was not self-limited, or controlled in less than 7 days was considered dose limiting toxicity (DLT). Results: Twenty-three patients were enrolled with a median follow up of 6 months. HCQ 100 mg was found to be the MTD in combination with CG with ≥Grade 3 thrombocytopenia and/or neutropenia as dose-limiting. Median OS was 11 months, and the 1- and 3- year overall survival rates were 30% and 7%, respectively. Median progression free survival was 5 months and the 6-, 12-, and 18-months progression-free survivals were 48%, 21% and 14%, respectively (Table). Conclusions: The MTD identified for CQ/HCQ was lower than previously reported with concomitant use of chemotherapeutic regimes, likely due to the myelosuppressive nature of CG. Clinical trial information: NCT02071537. [Table: see text]


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 6047-6047
Author(s):  
Jifang Gong ◽  
Jinhai Tang ◽  
Yongmei Yin ◽  
Dingwei Ye ◽  
Jian Zhang ◽  
...  

6047 Background: SC10914 is a highly selective inhibitor of PARP enzymes, including PARP1 and PARP2. SC10914 has a similar structure with olaparib. We conducted a phase I study to assess the safety, tolerability, PK/PD and preliminary efficacy of SC10914 in patients with advanced solid tumors. Methods: This is a phase I dose-escalation study with 3+3 design, we enrolled patients at 4 sites in China. Eligible patients were diagnosed with advanced solid malignancies who are refractory to standard therapies or for which no standard therapy exists; had measurable disease; had adequate organ function. Patients received SC10914 daily at ten escalating doses from 30 mg QD to 500 mg TID in a 28-day cycle. We obtained blood for PK and CA125 assessments. Toxic effects were assessed by CTCAE 4.03 criteria and tumour responses ascribed by RECIST 1.1 and CA125 was assessed by GCIG criteria. Results: As of January 2020, 52 patients were enrolled, of which 14 were males and 38 were females. Ten doses were escalated to 500mg TID, and no DLT was observed, and MTD was not obtained. The incidence of grade 3/4 AEs and SAEs that were related to SC10914 were 34.6% (18/52) and 13.5% (7/52). Grade 3/4 adverse reaction happened in at least two patients were anaemia/reduced hemoglobin (10/52, 19.2%), decreased WBC count (5/52, 9.6%), neutropenia (3/52, 5.8%), thrombocytopenia (2/52, 3.8%), and decreased lymphocyte count (2/52, 3.8%). A total of 17 gBRCAm evaluable ovarian cancer patients were enrolled, 6 of them had PR, the ORR was 35.3% (6/17). 10 gBRCAm ovarian cancer patients were enrolled in TID groups (including 2 patients who received BID doses at the beginning and changed to 300 mg TID dose after several cycles of treatment), 5 of them had PR, the ORR was 50% (5/10). The ORR of 400 mg TID group was 66.7%(4/6). PK data showed that the exposure of SC10914 was increased with dose increasing at the dose of 30 mg to 250 mg. The half-life of SC10914 was about 2-5 hours. Conclusions: SC10914 was safe in patients with advanced solid tumors. The main toxicity was blood-related adverse reactions. SC10914 was effective in gBRCAm ovarian cancer patients. 400 mg TID might be RP2D. Clinical trial information: NCT02940132.


Sign in / Sign up

Export Citation Format

Share Document