Clonal History and Genetic Predictors of Transformation Into Small-Cell Carcinomas From Lung Adenocarcinomas

2017 ◽  
Vol 35 (26) ◽  
pp. 3065-3074 ◽  
Author(s):  
June-Koo Lee ◽  
Junehawk Lee ◽  
Sehui Kim ◽  
Soyeon Kim ◽  
Jeonghwan Youk ◽  
...  

Purpose Histologic transformation of EGFR mutant lung adenocarcinoma (LADC) into small-cell lung cancer (SCLC) has been described as one of the major resistant mechanisms for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, the molecular pathogenesis is still unclear. Methods We investigated 21 patients with advanced EGFR-mutant LADCs that were transformed into EGFR TKI–resistant SCLCs. Among them, whole genome sequencing was applied for nine tumors acquired at various time points from four patients to reconstruct their clonal evolutionary history and to detect genetic predictors for small-cell transformation. The findings were validated by immunohistochemistry in 210 lung cancer tissues. Results We identified that EGFR TKI–resistant LADCs and SCLCs share a common clonal origin and undergo branched evolutionary trajectories. The clonal divergence of SCLC ancestors from the LADC cells occurred before the first EGFR TKI treatments, and the complete inactivation of both RB1 and TP53 were observed from the early LADC stages in sequenced tumors. We extended the findings by immunohistochemistry in the early-stage LADC tissues of 75 patients treated with EGFR TKIs; inactivation of both Rb and p53 was strikingly more frequent in the small-cell–transformed group than in the nontransformed group (82% v 3%; odds ratio, 131; 95% CI, 19.9 to 859). Among patients registered in a predefined cohort (n = 65), an EGFR mutant LADC that harbored completely inactivated Rb and p53 had a 43× greater risk of small-cell transformation (relative risk, 42.8; 95% CI, 5.88 to 311). Branch-specific mutational signature analysis revealed that apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC)–induced hypermutation was frequent in the branches toward small-cell transformation. Conclusion EGFR TKI–resistant SCLCs are branched out early from the LADC clones that harbor completely inactivated RB1 and TP53. The evaluation of RB1 and TP53 status in EGFR TKI–treated LADCs is informative in predicting small-cell transformation.

Author(s):  
Gudrun Absenger ◽  
Andreas Pircher

SummaryThis article intends to summarize personal non-small cell lung cancer (NSCLC) highlights of the virtual ASCO 2021 meeting. Immunotherapy is now a mainstay of advanced stage NSCLC treatment and there are several ongoing studies investigating the role of immunotherapy in early stage NSCLC. At ASCO 2021 the first data on atezolizumab in the adjuvant setting were presented and give a positive signal that immunotherapy will also become an option for patient in early stage NSCLC. Furthermore, overall survival (OS) updates of two studies investigating the effects of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the adjuvant setting of EGFR-mutated NSCLC patients were presented. In conclusion ASCO 2021 provided the lung cancer community with inspiring new data especial in early stages and challenges the community with integration of these data into our daily clinical routine.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3096
Author(s):  
Beung-Chul Ahn ◽  
Ji Hyun Lee ◽  
Min Hwan Kim ◽  
Kyoung-Ho Pyo ◽  
Choong-kun Lee ◽  
...  

Objectives: Patients with epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) ultimately acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) during treatment. In 5–22% of these patients, resistance is mediated by aberrant mesenchymal epithelial transition factor (MET) gene amplification. Here, we evaluated the emergence of MET amplification after EGFR-TKI treatment failure based on clinical parameters. Materials and Methods: We retrospectively analyzed 186 patients with advanced EGFR-mutant NSCLC for MET amplification status by in situ hybridization (ISH) assay after EGFR-TKI failure. We collected information including baseline patient characteristics, metastatic locations and generation, line, and progression-free survival (PFS) of EGFR-TKI used before MET evaluation. Multivariate logistic regression analysis was conducted to evaluate associations between MET amplification status and clinical variables. Results: Regarding baseline EGFR mutations, exon 19 deletion was predominant (57.5%), followed by L858R mutation (37.1%). The proportions of MET ISH assays performed after first/second-generation and third-generation TKI failure were 66.7% and 33.1%, respectively. The median PFS for the most recent EGFR-TKI treatment was shorter in MET amplification-positive patients than in MET amplification-negative patients (median PFS 7.0 vs. 10.4 months, p = 0.004). Multivariate logistic regression demonstrated that a history of smoking, short PFS on the most recent TKI, and less intracranial progression were associated with a high probability of MET amplification (all p < 0.05). Conclusions: Our results demonstrated the distinct clinical characteristics of patients with MET amplification-positive NSCLC after EGFR-TKI therapy. Our clinical prediction can aid physicians in selecting patients eligible for MET amplification screening and therapeutic targeting.


2021 ◽  
Vol 26 (2) ◽  
pp. 4-11
Author(s):  
O.M. Smorodska ◽  
Yu.V. Moskalenko ◽  
I.O. Vynnychenko ◽  
O.I. Vynnychenko ◽  
V.V. Kostuchenko

Tumor molecular profiling in patients with non-small cell lung cancer (NSCLC) is used to identify driver mutations, which lead to premature carcinogenesis in more than 80% of adenocarcinoma cases, including epidermal growth factor receptor (EGFR) mutations. Identification of specific somatic aberrations allows to personalize treatment. Personalization of treatment resulted in improvement of NSCLC outcomes. The aim of our study was to consider scientific data on modern concepts of treatment of patients with non-small cell lung cancer with previously detected oncogenic mutations, especially EGFR mutation. In our study we analyzed scientific papers and data of international scientific literature on the problem of lung cancer treatment. Methods used: scientific research, analytical and generalizing. Different drugs are used in treatment of lung cancer. Choice of treatment scheme depends on type and presence of mutations. Patients with advanced non-small-cell lung cancer and detected mutation in the EGFR can be treated with tyrosine kinase inhibitors (TKIs). Nowadays three first generation drugs are recommended by FDA: afatinib, erlotinib, gefitinib. They showed good clinical benefit. Most patients with metastatic NSCLC typically show disease progression after approximately 9 to 13 months of erlotinib, gefitinib, or afatinib therapy. The first and only commercially available third-generation EGFR TKI is оsimertinib - an oral drug, which selectively inhibits both EGFR-TKI and EGFR T790M resistance mutations. Nowadays scientists are in active investigation of mechanisms of acquired resistance to TKIs, but little is known yet. Clinical success can be observed in patients who were treated with TKIs. EGFR T790M is a mutation that leads to acquired resistance to EGFR TKI therapy. Its incidence is approximately 60% after disease progression on TKI drugs (erlotinib, gefitinib, or aphatinib). Third-generation EGFR TKIs demonstrate high efficacy, but acquired resistance development cannot be avoided. Mechanisms of acquired resistance to these agents are still investigated.


Sign in / Sign up

Export Citation Format

Share Document