The impact of four dimensions CT simulation on planning target volume in radiotherapy for primary lung cancer.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20091-e20091
Author(s):  
Fawzi Jamil Abuhijla ◽  
Lubna Abdelrahman Hammoudeh ◽  
Ramiz Ahmad Abu-Hijlih ◽  
Jamal Khader

e20091 Background: 4D CT simulation has been evolved to estimate the internal body motion and considered as a useful tool for intra-thoracic tumor definition. This study aimed to evaluate the impact of using 4D simulation on the planning target volume (PTV) for primary lung tumor. Methods: Patients who underwent CT simulation for primary lung cancer radiotherapy between 2012-2016 using 3D- (free breathing) and 4D- (respiratory gated) institutional protocol were included in this retrospective review. For each patient, gross tumor volume (GTV) was contoured in free breathing scan (3D-GTV), exhale scan (e-GTV) and inhale scan (i-GTV). The corresponding CTVs (3D-CTV, e-CTV and i-CTV) were created by adding 1 cm in all directions. 3D-internal target volume (3D-ITV) was generated by 0.5 cm cranio-caudal expansion of 3D-CTV, while 4D-ITV was created by combination of e-CTV and i-CTV. Subsequently, a 0.5 cm margin was added to generate the 3D-PTV and 4D-PTV respectively. The volumes of 3D-PTV and 4D-PTV were compared to examine the impact of 4D CT simulation on changes in the volume of PTV. Univariable and multivariable analysis were performed to test the impact of volume and location of GTV on the changes of PTV volume by more than 10 % between free breathing and respiratory gated scans. Results: A total of 10 patients were identified. The median [range] GTV, i-GTV, e-GTV volumes were 13.55 [1.44-628.66], 13.17 [1.77-627.36], 12.85 [1.34-630.25] cc respectively. The 3D-CTV, i-CTV, e-CTV volumes were 86.37 [23.76-1209], 84.97 [25.5- 1220.4], 83.40 [23.36-1224.12] cc respectively. 3D-ITV and 4D-ITV median volume was 106.06 [3.99-1422.8], 88.02 [20.51-1338.18] cc respectively. 3D-PTV was significantly larger than the 4D-PTV; median [range] volumes were 182.79 [58.65- 1861.05] vs. 158.21 [52.76-1771.02] cc, p = 0.0068). On multivariable analysis, neither the volume of GTV (p = 0.4917), nor the location of the tumor (peripheral, p = 0.4914 or lower location, p = 0.9594) had an in impact on PTV differences between free breathing and respiratory gated scans. Conclusions: The use of 4D simulation reduces the PTV for primary lung cancer, and it should be routinely implemented in clinical practice regardless the tumor volume or location.

2021 ◽  
pp. 96-96
Author(s):  
Slavica Maric ◽  
Petar Janjic ◽  
Borut Bosancic ◽  
Milan Mijailovic ◽  
Snezana Lukic

Background/Aim. Four dimensional (4DCT) simulation is a useful tool for motion assessment in lung cancer radiotherapy. Conventional Three dimensional (3D) - Free Breathing simulation is static, with limited motion information. The aim of this study was to compare clinically significant differences between the target volumes defined on 3D CT vs. 4D CT simulation and potential impact on the planning target volume (PTV). In addition, to quantify movements of primary tumour (GTV) during 4D CT simulation on three axis -Z-supero inferior (SI), X-mediolateral (ML), and Y-anteroposterior (AP). Methods. This retrospective study evaluated 20 lung cancer patients who underwent CT simulation for radical radiotherapy treatment. Free Breathing 3D CT and 4D CT simulation were acquired for each patient in accordance with our institutional protocol. Volumetric comparison radiation volumes defined on 3D CT vs. 4D CT simulation was done-Gross tumour volume GTV 3D vs. internal GTV- (iGTV 4D) and PTV 3D vs. iPTV 4D. Volumetric values expressed in cm3 and equivalent spherical diameter (ESD) expressed in cm were assessed. Comparison of GTV movement in the phase FB-GTV FB, phase 0-GTV0, phase 50-GTV 50, and phase Maximum intensity projection (MIP) -GTV MIP was made with GTV FB as the basic value. The evaluation was made in three axis. Results. Comparison volumetric values between GTV 3D vs. iGTV 4D was 63.15 vs.85.51 (p<0.001) respectively. iGTV 4D was significantly larger than GTV 3D (p<0.001). The mean value (ESD) PTV 3D vs.iPTV 4D was 8.44 vs. 7.82 (p<0.001) respectively, and mean value volume PTV 3D vs. iPTV 4D was 352.70 vs. 272.78 (p<0.001) respectively. PTV 3D was significantly larger than iPTV 4D (p<0.001). Statistically significant difference (p<0.05) was identified in the deviation related to Z axis between the upper and lower lobe. Conclusion. 4D CT simulation based delineation can reduce planning target volume compared to 3D simulation based radiation therapy and therefore, it is a prerequisite for high-quality and precise radiation therapy treatment.


2019 ◽  
Vol 24 (2) ◽  
pp. 175-179 ◽  
Author(s):  
Fawzi Abuhijla ◽  
Abdellatif Al-Mousa ◽  
Ramiz Abuhijlih ◽  
Lubna Hammoudeh ◽  
Khalid Dibs ◽  
...  

2017 ◽  
Vol 11 ◽  
pp. 117955491769846 ◽  
Author(s):  
Naseer Ahmed ◽  
Sankar Venkataraman ◽  
Kate Johnson ◽  
Keith Sutherland ◽  
Shaun K Loewen

Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT) image acquisition for non–small cell lung cancer (NSCLC) captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D) conformal radiotherapy (3DCRT) plans generated with standard helical free-breathing CT (FBCT) with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV) for primary and/or nodal disease was contoured on FBCT (GTV_3D). The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV)_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV) expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm3 and mean IGTV_4D was 152.5 cm3 ( P = .001). Mean PTV_3D was 530.0 cm3 and PTV_4D was 499.8 cm3 ( P = .40). Both gross primary and nodal disease analyzed separately were larger on 4D compared with FBCT. D95 (95% isodose line) covered 98% of PTV_3D and 88% of PTV_4D ( P = .003). Mean dice coefficient of PTV_3D and PTV_4D was 84%. Mean lung V20 was 24.0% for the 3D-based plans and 22.7% for the 4D-based plans ( P = .057). Mean heart V40 was 12.1% for the 3D-based plans and 12.7% for the 4D-based plans ( P = .53). Mean spinal cord Dmax was 2517 and 2435 cGy for 3D-based and 4D-based plans, respectively ( P = .019). Mean esophageal dose was 1580 and 1435 cGy for 3D and 4D plans, respectively ( P = .13). Conclusions: IGTV_4D was significantly larger than GTV_3D for both primary and nodal disease combined or separately. Mean PTV_3D was larger than PTV_4D, but the difference was not statistically significant. The PTV_4D coverage with 95% isodose line was inferior, indicating the importance of incorporating the true size and shape of the target volume. Relatively less dose was delivered to spinal cord and esophagus with plans based on 4D data set. Dice coefficient analysis for degree of similarity revealed that 16% of PTVs from both data sets did not overlap, indicating different anatomical positions of the PTV due to tumor/nodal motion during a respiratory cycle. All patients with lung cancer planned for radical radiotherapy should have 4D-CT simulation to ensure accurate coverage of the target volumes.


2018 ◽  
Vol 155 (4) ◽  
pp. 1843-1852 ◽  
Author(s):  
Luke J. Rogers ◽  
David Bleetman ◽  
David E. Messenger ◽  
Natasha A. Joshi ◽  
Lesley Wood ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. e002421
Author(s):  
Alessio Cortellini ◽  
Massimo Di Maio ◽  
Olga Nigro ◽  
Alessandro Leonetti ◽  
Diego L Cortinovis ◽  
...  

BackgroundSome concomitant medications including antibiotics (ATB) have been reproducibly associated with worse survival following immune checkpoint inhibitors (ICIs) in unselected patients with non-small cell lung cancer (NSCLC) (according to programmed death-ligand 1 (PD-L1) expression and treatment line). Whether such relationship is causative or associative is matter of debate.MethodsWe present the outcomes analysis according to concomitant baseline medications (prior to ICI initiation) with putative immune-modulatory effects in a large cohort of patients with metastatic NSCLC with a PD-L1 expression ≥50%, receiving first-line pembrolizumab monotherapy. We also evaluated a control cohort of patients with metastatic NSCLC treated with first-line chemotherapy. The interaction between key medications and therapeutic modality (pembrolizumab vs chemotherapy) was validated in pooled multivariable analyses.Results950 and 595 patients were included in the pembrolizumab and chemotherapy cohorts, respectively. Corticosteroid and proton pump inhibitor (PPI) therapy but not ATB therapy was associated with poorer performance status at baseline in both the cohorts. No association with clinical outcomes was found according to baseline statin, aspirin, β-blocker and metformin within the pembrolizumab cohort. On the multivariable analysis, ATB emerged as a strong predictor of worse overall survival (OS) (HR=1.42 (95% CI 1.13 to 1.79); p=0.0024), and progression free survival (PFS) (HR=1.29 (95% CI 1.04 to 1.59); p=0.0192) in the pembrolizumab but not in the chemotherapy cohort. Corticosteroids were associated with shorter PFS (HR=1.69 (95% CI 1.42 to 2.03); p<0.0001), and OS (HR=1.93 (95% CI 1.59 to 2.35); p<0.0001) following pembrolizumab, and shorter PFS (HR=1.30 (95% CI 1.08 to 1.56), p=0.0046) and OS (HR=1.58 (95% CI 1.29 to 1.94), p<0.0001), following chemotherapy. PPIs were associated with worse OS (HR=1.49 (95% CI 1.26 to 1.77); p<0.0001) with pembrolizumab and shorter OS (HR=1.12 (95% CI 1.02 to 1.24), p=0.0139), with chemotherapy. At the pooled analysis, there was a statistically significant interaction with treatment (pembrolizumab vs chemotherapy) for corticosteroids (p=0.0020) and PPIs (p=0.0460) with respect to OS, for corticosteroids (p<0.0001), ATB (p=0.0290), and PPIs (p=0.0487) with respect to PFS, and only corticosteroids (p=0.0033) with respect to objective response rate.ConclusionIn this study, we validate the significant negative impact of ATB on pembrolizumab monotherapy but not chemotherapy outcomes in NSCLC, producing further evidence about their underlying immune-modulatory effect. Even though the magnitude of the impact of corticosteroids and PPIs is significantly different across the cohorts, their effects might be driven by adverse disease features.


Sign in / Sign up

Export Citation Format

Share Document