An amplicon-based liquid biopsy for detecting ALK and ROS1 fusions and resistance mutations in advanced non-small cell lung cancer (NSCLC) patients.

2018 ◽  
Vol 36 (15_suppl) ◽  
pp. 9095-9095 ◽  
Author(s):  
Laura Mezquita ◽  
Cecile Jovelet ◽  
Ludovic Lacroix ◽  
David Planchard ◽  
Gonzalo Recondo ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1794
Author(s):  
Alice Indini ◽  
Erika Rijavec ◽  
Francesco Grossi

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death (PD)-1 protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, have revolutionized the management of patients with advanced non-small cell lung cancer (NSCLC). Unfortunately, only a small portion of NSCLC patients respond to these agents. Furthermore, although immunotherapy is usually well tolerated, some patients experience severe immune-related adverse events (irAEs). Liquid biopsy is a non-invasive diagnostic procedure involving the isolation of circulating biomarkers, such as circulating tumor cells (CTC), cell-free DNA (cfDNA), and microRNAs (miRNAs). Thanks to recent advances in technologies, such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR), liquid biopsy has become a useful tool to provide baseline information on the tumor, and to monitor response to treatments. This review highlights the potential role of liquid biomarkers in the selection of NSCLC patients who could respond to immunotherapy, and in the identification of patients who are most likely to experience irAEs, in order to guide improvements in care.


2020 ◽  
pp. jclinpath-2020-207107
Author(s):  
Antonino Iaccarino ◽  
Pasquale Pisapia ◽  
Francesco Pepe ◽  
Roberta Sgariglia ◽  
Mariantonia Nacchio ◽  
...  

V-Raf murine sarcoma viral oncogene homolog B (BRAF) gene mutations have recently been approved to select advanced stages non-small cell lung cancer (NSCLC) patients for tyrosine kinase inhibitors treatments. In this setting, liquid biopsy may represent a valuable option for BRAF mutational testing in patients without tissue availability. Here, we reviewed 196 plasma based liquid biopsies analysed by an in-house developed next generation sequencing panel, termed SiRe. On the overall, 6 (3.1%) out of 196 BRAF mutated cases were identified, with an overall median allelic frequency of 3.4%. Exon 15 p.V600E was the most common detected mutation (2/6, 33.3%). Our data highlighted that the SiRe panel is a robust tool for BRAF mutation assessment on circulating tumour DNA. Further investigation is required to develop a diagnostic algorithm to harmonise BRAF testing on tissue and blood in advanced stages NSCLC patients.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1675
Author(s):  
Elien Augustus ◽  
Karen Zwaenepoel ◽  
Vasiliki Siozopoulou ◽  
Jo Raskin ◽  
Stephanie Jordaens ◽  
...  

In the last decade, immunotherapy has been one of the most important advances in the non-small cell lung cancer (NSCLC) treatment landscape. Nevertheless, only a subset of NSCLC patients benefits from it. Currently, the only Food and Drug Administration (FDA) approved diagnostic test for first-line immunotherapy in metastatic NSCLC patients uses tissue biopsies to determine the programmed death ligand 1 (PD-L1) status. However, obtaining tumor tissue is not always feasible and puts the patient at risk. Liquid biopsy, which refers to the tumor-derived material present in body fluids, offers an alternative approach. This less invasive technique gives real-time information on the tumor characteristics. This review addresses different promising liquid biopsy based biomarkers in NSCLC patients that enable the selection of patients who benefit from immunotherapy and the monitoring of patients during this therapy. The challenges and the opportunities of blood-based biomarkers such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), exosomes, epigenetic signatures, microRNAs (miRNAs) and the T cell repertoire will be addressed. This review also focuses on the less-studied feces-based and breath-based biomarkers.


Author(s):  
Marco Giallombardo ◽  
Jorge Chacártegui Borrás ◽  
Marta Castiglia ◽  
Nele Van Der Steen ◽  
Inge Mertens ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e21506-e21506
Author(s):  
Saleha Rizwan ◽  
Zachary Otaibi ◽  
Herman Lo ◽  
Talal Khan ◽  
Rodney E. Wegner ◽  
...  

e21506 Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a broad spectrum of targeted therapies already available or in clinical trials. Among the NSCLC patients, 23% to 25% harbor a mutation in a gene associated with approved or emerging targeted therapy. These therapies have changed the therapeutic landscape of NSCLC with significantly improved clinical outcomes in advanced metastatic NSCLC patients. It is imperative to test for these gene alterations in order to identify patients who could potentially benefit from these efficacious targeted therapies and to avoid therapies unlikely to provide clinical benefit. A major limitation in obtaining molecular testing occurs when minimally invasive techniques are used to obtain tissue sample resulting in insufficient yield for testing. In such cases, the utilization of circulating tumor DNA (ctDNA), commonly known as liquid biopsy, has proven very beneficial. In a study utilizing ctDNA, increased detection rates were found when using ctDNA in addition to tissue testing and a > 98.2% concordance rate was found. We report results of 40 NSCLC patients from our institute who had liquid biopsy with or without tissue profiling done. Methods: We molecularly profiled 40 newly diagnosed advanced NSCLC patients using both tissue and liquid biopsies. Tissue was assayed using the John Hopkins university molecular panel and liquid biopsies were performed by Biocept. Results: 14 out of 40 (35%) patients had insufficient or no tissue for molecular testing. Concordant results were found in 17 out of the 26 (65.4%) patients who had both tissue and liquid molecular testing done. Liquid Biopsy detected additional mutations in 5 (19.2%) patients which were not picked up on tissue and led to change in management in 4 patients. 12 out of 40 (30%) patients had repeat liquid biopsies done at progression of disease with new mutations detected on 4 patients revealing resistance to current treatment and change in treatment. Conclusions: Liquid Biopsy reveals high concordance rates with tissue genotyping and increases rate of detection of targetable mutations in NSCLC. It offers a safe and effective alternative when additional tissue is needed to identify genetic mutations.


2021 ◽  
Author(s):  
Hillary Sloane ◽  
Priya Sathyanarayan ◽  
Daniel Edelstein ◽  
Frederick Jones ◽  
Jennifer Preston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document