exosomal mirna
Recently Published Documents





2022 ◽  
Vol 12 (3) ◽  
pp. 558-563
Boxian Zhao ◽  
Weiguo Zhu

Multiple miRNAs are differentially expressed in gastric cancer (GC). Herein, this study aims to investigate miR-455’s role in GC and its mechanism. Exosomes (exo) separated from BMSCs after transfection were co-cultured with either phagocytes, GC cells (NCI-N87 cell), or macrophages combined with NCI-N87cells (mixed group) followed by analysis of the expression of PTEN, N-cadherin, E-cadherin, and PI3K, and AKT by RT-qPCR and Western blot. Increased miR-455 expression was observed in GC cells upon transfection. GC cells in the mixed group relative to NCI-N87 group exhibited a lower cell migration and invasion and impaired proliferative capacity (p < 0.05), accompanied with higher expressions of N-cadherin, E-cadherin, PI3K, and AKT, and decreased level of PTEN (p < 0.05). The combined treatment resulted in a higher phagocytic rate (12.38±0.21%) and phagocytic index (14.29±2.11%) compared to treatment with only phagocytes (p < 0.05). In conclusion, BMSC-derived exosomal miR-455 inhibits the growth of GC cells and promotes the phagocytosis through inactivating PI3K/AKT signaling pathway.

2022 ◽  
Vol 12 ◽  
Jin-Seok Byun ◽  
Ho Yeop Lee ◽  
Jingwen Tian ◽  
Ji Sun Moon ◽  
Jaejin Choi ◽  

Periodontitis is caused by an oral microbial dysbiosis-mediated imbalance of the local immune microenvironment, which is promoted by insulin resistance and obesity. The prevalence and severity of periodontitis is higher in patients with type 2 diabetes than in healthy individuals, possibly because of differences in immune responses. The level of glycemic control also affects the saliva profile, which may further promote periodontal disease in diabetes patients. Therefore, we compared the salivary exosomal miRNA profiles of patients with type 2 diabetes with those of healthy individuals, and we found that exosomal miR-25-3p in saliva is significantly enriched (by approximately 2-fold, p &lt; 0.01) in obese patients with type 2 diabetes. We also identified CD69 mRNA as a miR-25-3p target that regulates both activation of γδ T cells and the inflammatory response. Knockdown of CD69 increased (by approximately 2-fold) interleukin-17A production of γδ T cells in vitro. To evaluate the role of exosomal miRNA on progression of periodontitis, we analyzed regional immune cells in both periodontal tissues and lymph nodes from mice with periodontitis. We found that diet-induced obesity increased the population of infiltrating pro-inflammatory immune cells in the gingiva and regional lymph nodes of these mice. Treatment with miR-25-3p inhibitors prevented the local in vivo inflammatory response in mice with periodontitis and diet-induced obesity. Finally, we showed that suppression of interleukin 17-mediated local inflammation by a miR-25-3p inhibitor alleviated (by approximately 34%) ligature-induced periodontal alveolar bone loss in mice. Taken together, these data suggest that exosomal miR-25-3p in saliva contributes to development and progression of diabetes-associated periodontitis. Discovery of additional miR-25-3p targets may provide critical insights into developing drugs to treat periodontitis by regulating γδ T cell-mediated local inflammation.

2021 ◽  
Yuanyuan Zhao ◽  
Shuhong Pan ◽  
Yunying Li ◽  
Xiaohua Wu

Abstract Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorders disease in women of reproductive age. The anovulation caused by abnormal follicular development is still the main characteristic of infertile patients with PCOS. Granulosa cells (GCs), an important component of follicular microenvironment, affect follicular development through GCs dysfunction. Increasing evidence indicates that exosomal miRNAs derived from follicular fluid (FF) of patients play critical roles during PCOS. However, which and how follicular fluid derived exosomal miRNAs play a pivotal role in controlling granulosa cells function and consequently follicular development remain largely unknown. Herein, we showed that miR-143-3p is highly expressed in follicular fluid exosomes of PCOS patients and can be delivered into granulosa cells. Furthermore, the functional experiments showed that the translocated miR-143-3p promoted granulosa cell apoptosis, which are important in follicle development. In terms of mechanism, we demonstrated that BMPR1A was identified as a direct target of miR-143-3p. Overexpression of BMPR1A reversed the effects of exosomal miR-143-3p on GCs apoptosis and proliferation by activating Smad1/5/8 signaling pathway. These results demonstrate that miR-143-3p-containing exosomes derived from PCOS follicular fluid promoted granulosa cell apoptosis by targeting BMPR1A and blockading Smad1/5/8 signaling pathway. Our findings provide a novel mechanism underlying the roles of exosomal-miRNA in follicular fluid of PCOS and facilitate the development of therapeutic strategies for PCOS.

2021 ◽  
Vol 12 ◽  
Wenqian Wang ◽  
Chenran Yue ◽  
Sheng Gao ◽  
Shuting Li ◽  
Jianan Zhou ◽  

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.

2021 ◽  
Li Wang ◽  
Xingguo Song ◽  
Miao Yu ◽  
Limin Niu ◽  
Yajing Zhao ◽  

Aim: This study aimed to identify specific and sensitive exosomal miRNAs in diagnosing patients with colorectal cancer (CRC). Methods: Serum exosomes were isolated from 175 CRC patients and 172 healthy donors by ultracentrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting. Exosomal miRNA expression was detected by qPCR and the results analyzed by receiver operating characteristic analysis to illuminate the diagnostic accuracy. Results: Both exosomal miR-377-3p and miR-381-3p were downregulated in CRC patients as well as in early-stage patients compared with healthy donors; they could serve as circulating biomarkers of diagnosis, including early diagnosis, for CRC, possessing favorable diagnostic efficiency. Conclusion: Exosomal miR-377-3p and miR-381-3p levels were downregulated in CRC patients and may be useful as novel and specific biomarkers for the diagnosis of CRC, especially early-stage CRC.

2021 ◽  
Yury Orlando Nunez Lopez ◽  
Anna Casu ◽  
Zuzana Kovacova ◽  
Alejandra M Petrilli ◽  
Olga Sideleva ◽  

Pioglitazone, a PPARγ agonist, is used to treat type 2 diabetes (T2D). PPARγ is highly expressed in adipose tissue (AT), however the effects of pioglitazone to improve insulin sensitivity are also evident in other tissues. We hypothesized that pioglitazone modifies the cargo of circulating AT-derived extracellular vesicles (EVs) to alter interorgan crosstalk. We tested this in a 3-month trial in which 24 subjects with T2D who were well-controlled with diet/exercise or metformin were randomized to treatment with either pioglitazone 45 mg/day or placebo (NCT00656864). Levels of 42 adipocyte-derived EV-miRNAs were measured in plasma EVs. Levels of 5 miRNAs (i.e., miR-7-5p, miR-20a-5p, miR-92a-3p, miR-195-5p, and miR-374b-5p) were significantly downregulated in EVs in response to pioglitazone treatment relative to placebo. However, the opposite occurred for miR-195-5p in subcutaneous AT from the same participants. Changes in miRNA expression in EVs and AT correlated with changes in suppression of lipolysis and improved insulin sensitivity, among others. DICER was downregulated and exosomal miRNA sorting-related genes YBX1 and hnRNPA2B1 displayed a trend toward downregulation in AT. Furthermore, analysis of EV-miRNA targeted genes identified a network of overtargeted transcripts that changed in a coordinated manner in AT. Collectively, our results suggest that some beneficial pharmacologic effects of PIO are mediated by adipose-specific miRNA regulation and exosomal/EV trafficking.

Sign in / Sign up

Export Citation Format

Share Document