scholarly journals Integrating Clinical and Polygenic Factors to Predict Breast Cancer Risk in Women Undergoing Genetic Testing

2021 ◽  
pp. 307-316
Author(s):  
Elisha Hughes ◽  
Placede Tshiaba ◽  
Susanne Wagner ◽  
Thaddeus Judkins ◽  
Eric Rosenthal ◽  
...  

PURPOSE Screening and prevention decisions for women at increased risk of developing breast cancer depend on genetic and clinical factors to estimate risk and select appropriate interventions. Integration of polygenic risk into clinical breast cancer risk estimators can improve discrimination. However, correlated genetic effects must be incorporated carefully to avoid overestimation of risk. MATERIALS AND METHODS A novel Fixed-Stratified method was developed that accounts for confounding when adding a new factor to an established risk model. A combined risk score (CRS) of an 86–single-nucleotide polymorphism polygenic risk score and the Tyrer-Cuzick v7.02 clinical risk estimator was generated with attenuation for confounding by family history. Calibration and discriminatory accuracy of the CRS were evaluated in two independent validation cohorts of women of European ancestry (N = 1,615 and N = 518). Discrimination for remaining lifetime risk was examined by age-adjusted logistic regression. Risk stratification with a 20% risk threshold was compared between CRS and Tyrer-Cuzick in an independent clinical cohort (N = 32,576). RESULTS Simulation studies confirmed that the Fixed-Stratified method produced accurate risk estimation across patients with different family history. In both validation studies, CRS and Tyrer-Cuzick were significantly associated with breast cancer. In an analysis with both CRS and Tyrer-Cuzick as predictors of breast cancer, CRS added significant discrimination independent of that captured by Tyrer-Cuzick ( P < 10−11 in validation 1; P < 10−7 in validation 2). In an independent cohort, 18% of women shifted breast cancer risk categories from their Tyrer-Cuzick–based risk compared with risk estimates by CRS. CONCLUSION Integrating clinical and polygenic factors into a risk model offers more effective risk stratification and supports a personalized genomic approach to breast cancer screening and prevention.

2019 ◽  
Author(s):  
Amber N Wilcox ◽  
Parichoy Pal Choudhury ◽  
Chi Gao ◽  
Anika Hüsing ◽  
Mikael Eriksson ◽  
...  

ABSTRACTPURPOSERisk-stratified breast cancer prevention requires accurate identification of women at sufficiently different levels of risk. We conducted a comprehensive evaluation of a model integrating classical risk factors and a recently developed 313-variant polygenic risk score (PRS) to predict breast cancer risk.METHODSFifteen prospective cohorts from six countries with 237,632 women (7,529 incident breast cancer patients) of European ancestry aged 19-75 years at baseline were included. Calibration of five-year risk was assessed by comparing predicted and observed proportions of cases overall and within risk categories. Risk stratification for women of European ancestry aged 50-70 years in those countries was evaluated by the proportion of women and future breast cancer cases crossing clinically-relevant risk thresholds.RESULTSThe model integrating classical risk factors and PRS accurately predicted five-year risk. For women younger than 50 years, median (range) expected-to-observed ratio across the cohorts was 0.94 (0.72 to 1.01) overall and 0.9 (0.7 to 1.4) at the highest risk decile. For women 50 years or older, these ratios were 1.04 (0.73 to 1.31) and 1.2 (0.7 to 1.6), respectively. The proportion of women in the general population identified above the 3% five-year risk threshold (used for recommending risk-reducing medications in the US) ranged from 7.0% in Germany (∼841,000 of 12 million) to 17.7% in the US (∼5.3 of 30 million). At this threshold, 14.7% of US women were re-classified by the addition of PRS to classical risk factors, identifying 12.2% additional future breast cancer cases.CONCLUSIONEvaluation across multiple prospective cohorts demonstrates that integrating a 313-SNP PRS into a risk model substantially improves its ability to stratify women of European ancestry for applying current breast cancer prevention guidelines.


2016 ◽  
Vol 159 (3) ◽  
pp. 513-525 ◽  
Author(s):  
Yiwey Shieh ◽  
Donglei Hu ◽  
Lin Ma ◽  
Scott Huntsman ◽  
Charlotte C. Gard ◽  
...  

2021 ◽  
pp. 1073-1081
Author(s):  
Shannon Gallagher ◽  
Elisha Hughes ◽  
Allison W. Kurian ◽  
Susan M. Domchek ◽  
Judy Garber ◽  
...  

PURPOSE Breast cancer risks for CHEK2 and ATM pathogenic variant (PV) carriers are modified by an 86-single nucleotide polymorphism polygenic risk score (PRS) and individual clinical factors. Here, we describe comprehensive risk prediction models for women of European ancestry combining PV status, PRS, and individual clinical variables. MATERIALS AND METHODS This study included deidentified clinical records from 358,095 women of European ancestry who received testing with a multigene panel (September 2013 to November 2019). Model development included CHEK2 PV carriers (n = 4,286), ATM PV carriers (n = 2,666), and women negative for other breast cancer risk gene PVs (n = 351,143). Odds ratios (ORs) were calculated using multivariable logistic regression with adjustment for familial cancer history. Risk estimates incorporating PV status, PRS, and Tyrer-Cuzick v7.02 were calculated using a Fixed-Stratified method that accounts for correlations between risk factors. Stratification of PV carriers into risk categories on the basis of remaining lifetime risk (RLR) was assessed in independent cohorts of PV carriers. RESULTS ORs for association of PV status with breast cancer were 2.01 (95% CI, 1.88 to 2.16) and 1.83 (95% CI, 1.68 to 2.00) for CHEK2 and ATM PV carriers, respectively. ORs for PRS per one standard deviation were 1.51 (95% CI, 1.37 to 1.66) and 1.45 (95% CI, 1.30 to 1.64) in CHEK2 and ATM PV carriers, respectively. Using the combined model (PRS plus Tyrer-Cuzick plus PV status), RLR was low (≤ 20%) for 24.2% of CHEK2 PV carriers, medium (20%-50%) for 63.8%, and high (> 50%) for 12.0%. Among ATM PV carriers, RLR was low for 31.5% of patients, medium for 58.5%, and high for 9.7%. CONCLUSION In CHEK2 and ATM PV carriers, risk assessment including PRS, Tyrer-Cuzick, and PV status has the potential for more precise direction of screening and prevention strategies.


Author(s):  
Michael Wolfson ◽  
Steve Gribble ◽  
Nora Pashayan ◽  
Douglas F. Easton ◽  
Antonis C. Antoniou ◽  
...  

Abstract Purpose Breast cancer risk has conventionally been assessed using family history (FH) and rare high/moderate penetrance pathogenic variants (PVs), notably in BRCA1/2, and more recently PALB2, CHEK2, and ATM. In addition to these PVs, it is now possible to use increasingly predictive polygenic risk scores (PRS) as well. The comparative population-level predictive capability of these three different indicators of genetic risk for risk stratification is, however, unknown. Methods The Canadian heritable breast cancer risk distribution was estimated using a novel genetic mixing model (GMM). A realistically representative sample of women was synthesized based on empirically observed demographic patterns for appropriately correlated family history, inheritance of rare PVs, PRS, and residual risk from an unknown polygenotype. Risk assessment was simulated using the BOADICEA risk algorithm for 10-year absolute breast cancer incidence, and compared to heritable risks as if the overall polygene, including its measured PRS component, and PV risks were fully known. Results Generally, the PRS was most predictive for identifying women at high risk, while family history was the weakest. Only the PRS identified any women at low risk of breast cancer. Conclusion PRS information would be the most important advance in enabling effective risk stratification for population-wide breast cancer screening.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Clara Bodelon ◽  
Hannah Oh ◽  
Andriy Derkach ◽  
Joshua N. Sampson ◽  
Brian L. Sprague ◽  
...  

Abstract Terminal duct lobular units (TDLUs) are the predominant anatomical structures where breast cancers originate. Having lesser degrees of age-related TDLU involution, measured as higher TDLUs counts or more epithelial TDLU substructures (acini), is related to increased breast cancer risk among women with benign breast disease (BBD). We evaluated whether a recently developed polygenic risk score (PRS) based on 313-common variants for breast cancer prediction is related to TDLU involution in the background, normal breast tissue, as this could provide mechanistic clues on the genetic predisposition to breast cancer. Among 1398 women without breast cancer, higher values of the PRS were significantly associated with higher TDLU counts (P = 0.004), but not with acini counts (P = 0.808), in histologically normal tissue samples from donors and diagnostic BBD biopsies. Mediation analysis indicated that TDLU counts may explain a modest proportion (≤10%) of the association of the 313-variant PRS with breast cancer risk. These findings suggest that TDLU involution might be an intermediate step in the association between common genetic variation and breast cancer risk.


2020 ◽  
Author(s):  
Feng Zhao ◽  
Zhixiang Hao ◽  
Yanan Zhong ◽  
Yinxue Xu ◽  
Meng Guo ◽  
...  

Abstract Background In this study, we aim to uncover the relationship between estrogen levels and the genetic polymorphism of estrogen metabolism-related enzymes with breast cancer (BC) and establish a risk prediction model based on polygenic risk score. Methods Unrelated BC patients and healthy subjects were recruited for analysis of the estrogen levels and the single nucleotide polymorphisms (SNPs) of estrogen metabolism-related enzymes. The polygenic risk score (PRS) was used to explore the combined effect of multiple genes which was calculated using a Bayesian approach. The independent sample t test was used to evaluate the difference between PRS scores of BC and healthy subjects. Discriminatory accuracy of the models was compared using the area under the receiver operating characteristic curve (ROC). Results The estrogen homeostasis profile was disturbed in BC patients, with parent estrogens (E1, E2) and carcinogenic catechol estrogens (2/4-OHE1, 2-OHE2, 4-OHE2) significantly accumulated in the serum of BC patients. Then,we established PRS model to evaluate the role of multiple genes SNPs. The PRS model 1 (M1) was established from 6 GWAS-identified high risk genes SNPs. On the basis of M1, we added 7 estrogen metabolism enzyme genes SNPs to establish PRS model 2 (M2). The independent sample t test results show that there is no difference between BC and healthy subjects in M1 (P = 0.17), however, there is significant difference between BC and healthy subjects in M2 (P = 4.9*10− 5). The ROC curve results also show that the accuracy of M2 (AUC = 62.18%) in breast cancer risk identification was better than M1 (AUC = 54.56%). Conclusion Estrogens and the related metabolic enzymes gene polymorphisms are closely related to BC. The model constructed by adding estrogen metabolic enzyme genes SNPs has a good ability in breast cancer risk prediction, and the accuracy is greatly improved comparing PRS model only includes GWAS-identified genes SNPs.


Sign in / Sign up

Export Citation Format

Share Document