Cytoplasmic Incompatibility

2003 ◽  
pp. 235-264
Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1415-1422 ◽  
Author(s):  
Sylvain Charlat ◽  
Claire Calmet ◽  
Hervé Merçot

Abstract Cytoplasmic incompatibility (CI) is induced by the endocellular bacterium Wolbachia. It results in an embryonic mortality occurring when infected males mate with uninfected females. The mechanism involved is currently unknown, but the mod resc model allows interpretation of all observations made so far. It postulates the existence of two bacterial functions: modification (mod) and rescue (resc). The mod function acts in the males' germline, before Wolbachia are shed from maturing sperm. If sperm is affected by mod, zygote development will fail unless resc is expressed in the egg. Interestingly, CI is also observed in crosses between infected males and infected females when the two partners bear different Wolbachia strains, demonstrating that mod and resc interact in a specific manner: Two Wolbachia strains are compatible with each other only if they harbor the same compatibility type. Here we focus on the evolutionary process involved in the emergence of new compatibility types from ancestral ones. We argue that new compatibility types are likely to evolve under a wider range of conditions than previously thought, through a two-step process. First, new mod variants can arise by mutation and spread by drift. This is possible because mod is expressed in males and Wolbachia is transmitted by females. Second, once such a mod variant achieves a certain frequency, it can create the conditions for the deterministic invasion of a new resc variant, allowing the invasion of a new mod resc pair. Furthermore, we show that a stable polymorphism might be maintained in natural populations, allowing the long-term existence of “suicidal” Wolbachia strains.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2029-2038 ◽  
Author(s):  
Jason L Rasgon ◽  
Thomas W Scott

AbstractBefore maternally inherited bacterial symbionts like Wolbachia, which cause cytoplasmic incompatibility (CI; reduced hatch rate) when infected males mate with uninfected females, can be used in a program to control vector-borne diseases it is essential to understand their dynamics of infection in natural arthropod vector populations. Our study had four goals: (1) quantify the number of Wolbachia strains circulating in the California Culex pipiens species complex, (2) investigate Wolbachia infection frequencies and distribution in natural California populations, (3) estimate the parameters that govern Wolbachia spread among Cx. pipiens under laboratory and field conditions, and (4) use these values to estimate equilibrium levels and compare predicted infection prevalence levels to those observed in nature. Strain-specific PCR, wsp gene sequencing, and crossing experiments indicated that a single Wolbachia strain infects Californian Cx. pipiens. Infection frequency was near or at fixation in all populations sampled for 2 years along a >1000-km north-south transect. The combined statewide infection frequency was 99.4%. Incompatible crosses were 100% sterile under laboratory and field conditions. Sterility decreased negligibly with male age in the laboratory. Infection had no significant effect on female fecundity under laboratory or field conditions. Vertical transmission was >99% in the laboratory and ∼98.6% in the field. Using field data, models predicted that Wolbachia will spread to fixation if infection exceeds an unstable equilibrium point above 1.4%. Our estimates accurately predicted infection frequencies in natural populations. If certain technical hurdles can be overcome, our data indicate that Wolbachia can invade vector populations as part of an applied transgenic strategy for vector-borne disease reduction.


2017 ◽  
Vol 13 (5) ◽  
pp. 20170153 ◽  
Author(s):  
Mai Miyata ◽  
Tatsuro Konagaya ◽  
Kenji Yukuhiro ◽  
Masashi Nomura ◽  
Daisuke Kageyama

Maternally inherited Wolbachia endosymbionts manipulate arthropod reproduction in various ways. In the butterfly Eurema mandarina , a cytoplasmic incompatibility-inducing Wolbachia strain w CI and the associated mtDNA haplotypes are known to originate from the sister species Eurema hecabe , which offered a good case study for microbe-mediated hybrid introgression. Besides w CI, some females with the Z0 karyotype harbour a distinct Wolbachia strain w Fem, which causes all-female production by meiotic drive and feminization. We report that a considerable proportion of E. mandarina females (65.7%) were infected with both w CI and w Fem (CF) on Tanegashima Island. While females singly infected with w CI (C) produced offspring at a 1 : 1 sex ratio, CF females produced only females. Although Z-linked sequence polymorphism showed no signs of divergence between C and CF females, mtDNA split into two discrete clades; one consisted of C females and the other CF females, both of which formed a clade with E. hecabe but not with uninfected E. mandarina . This suggests that CF matrilines also, but independently, experienced a selective sweep after hybrid introgression from E. hecabe . Distinct evolutionary forces were suggested to have caused C and CF matrilines to diverge, which would be irreversible because of the particular phenotype of w Fem.


Sign in / Sign up

Export Citation Format

Share Document