Concurrent, Distributed Control of Saccade Initiation in the Frontal Eye Field and Superior Colliculus

Author(s):  
Douglas Munoz ◽  
Jeffrey Schall
1987 ◽  
Vol 57 (4) ◽  
pp. 1033-1049 ◽  
Author(s):  
P. H. Schiller ◽  
J. H. Sandell ◽  
J. H. Maunsell

Rhesus monkeys were trained to make saccadic eye movements to visual targets using detection and discrimination paradigms in which they were required to make a saccade either to a solitary stimulus (detection) or to that same stimulus when it appeared simultaneously with several other stimuli (discrimination). The detection paradigm yielded a bimodal distribution of saccadic latencies with the faster mode peaking around 100 ms (express saccades); the introduction of a pause between the termination of the fixation spot and the onset of the target (gap) increased the frequency of express saccades. The discrimination paradigm, on the other hand, yielded only a unimodal distribution of latencies even when a gap was introduced, and there was no evidence for short-latency "express" saccades. In three monkeys either the frontal eye field or the superior colliculus was ablated unilaterally. Frontal eye field ablation had no discernible long-term effects on the distribution of saccadic latencies in either the detection or discrimination tasks. After unilateral collicular ablation, on the other hand, express saccades obtained in the detection paradigm were eliminated for eye movements contralateral to the lesion, leaving only a unimodal distribution of latencies. This deficit persisted throughout testing, which in one monkey continued for 9 mo. Express saccades were not observed again for saccades contralateral to the lesion, and the mean latency of the contralateral saccades was longer than the mean latency of the second peak for the ipsiversive saccades. The latency distribution of saccades ipsiversive to the collicular lesion was unaffected except for a few days after surgery, during which time an increase in the proportion of express saccades was evident. Saccades obtained with the discrimination paradigm yielded a small but reliable increase in saccadic latencies following collicular lesions, without altering the shape of the distribution. Unilateral muscimol injections into the superior colliculus produced results similar to those obtained immediately after collicular lesions: saccades contralateral to the injection site were strongly inhibited and showed increased saccadic latencies. This was accompanied by a decrease of ipsilateral saccadic latencies and an increase in the number of saccades falling into the express range. The results suggest that the superior colliculus is essential for the generation of short-latency (express) saccades and that the frontal eye fields do not play a significant role in shaping the distribution of saccadic latencies in the paradigms used in this study.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (2) ◽  
pp. 1046-1062 ◽  
Author(s):  
Janet O. Helminski ◽  
Mark A. Segraves

Extracellular recordings were made simultaneously in the frontal eye field and superior colliculus in awake, behaving rhesus monkeys. Frontal eye field microstimulation was used to orthodromically activate the superior colliculus both to locate the depth of the strongest frontal eye field input to the superior colliculus and to identify superior colliculus neurons receiving direct frontal eye field input. The activity of orthodromically driven colliculus neurons was characterized during visuomotor tasks. The purpose of this study was to identify the types of superior colliculus neurons that receive excitatory frontal eye field input. We found that microstimulation of the frontal eye field did not activate the superficial layers of the superior colliculus but did activate the deeper layers. This pattern of activation coincided with the prevalence of visual versus saccade-related activity in the superficial and deep layers. A total of 83 orthodromically driven superior colliculus neurons were identified. Of these neurons, 93% ( n = 77) exhibited a burst of activity associated with the onset of the saccade, and 25% ( n = 21) exhibited prelude/build-up activity prior to the onset of a saccade. In addition, it was common to see some activity synchronized with the onset of a visual target (30%, n = 25). In single neurons, these activity profiles could be observed alone or in combination. Superior colliculus neurons that were exclusively visual, however, were not excited by frontal eye field stimulation. We compared the activity of superior colliculus neurons that received frontal eye field input to descriptions of saccade-related neurons made in earlier reports and found that the distribution of neuron types in the orthodromically driven population was similar to the distribution within the overall population. This suggests that the frontal eye field does not selectively influence a specific class of collicular neurons, but, instead has a direct influence on all preparatory, and saccade-related activity within the deep layers of the superior colliculus.


2004 ◽  
Vol 91 (3) ◽  
pp. 1381-1402 ◽  
Author(s):  
Marc A. Sommer ◽  
Robert H. Wurtz

Neuronal processing in cerebral cortex and signal transmission from cortex to brain stem have been studied extensively, but little is known about the numerous feedback pathways that ascend from brain stem to cortex. In this study, we characterized the signals conveyed through an ascending pathway coursing from the superior colliculus (SC) to the frontal eye field (FEF) via mediodorsal thalamus (MD). Using antidromic and orthodromic stimulation, we identified SC source neurons, MD relay neurons, and FEF recipient neurons of the pathway in Macaca mulatta. The monkeys performed oculomotor tasks, including delayed-saccade tasks, that permitted analysis of signals such as visual activity, delay activity, and presaccadic activity. We found that the SC sends all of these signals into the pathway with no output selectivity, i.e., the signals leaving the SC resembled those found generally within the SC. Visual activity arrived in FEF too late to contribute to short-latency visual responses there, and delay activity was largely filtered out in MD. Presaccadic activity, however, seemed critical because it traveled essentially unchanged from SC to FEF. Signal transmission in the pathway was fast (∼2 ms from SC to FEF) and topographically organized (SC neurons drove MD and FEF neurons having similarly eccentric visual and movement fields). Our analysis of identified neurons in one pathway from brain stem to frontal cortex thus demonstrates that multiple signals are sent from SC to FEF with presaccadic activity being prominent. We hypothesize that a major signal conveyed by the pathway is corollary discharge information about the vector of impending saccades.


2017 ◽  
Vol 37 (48) ◽  
pp. 11715-11730 ◽  
Author(s):  
Tyler R. Peel ◽  
Suryadeep Dash ◽  
Stephen G. Lomber ◽  
Brian D. Corneil

2017 ◽  
Author(s):  
Thomas R. Reppert ◽  
Mathieu Servant ◽  
Richard P. Heitz ◽  
Jeffrey D. Schall

AbstractBalancing the speed-accuracy tradeoff (SAT) is necessary for successful behavior. Using a visual search task with interleaved cues emphasizing speed or accuracy, we recently reported diverse contributions of frontal eye field (FEF) neurons instantiating salience evidence and response preparation. Here we report replication of visual search SAT performance in two macaque monkeys, new information about variation of saccade dynamics with SAT, extension of the neurophysiological investigation to describe processes in the superior colliculus, and description of the origin of search errors in this task. Saccade vigor varied idiosyncratically across SAT conditions and monkeys, but tended to decrease with response time. As observed in the FEF, speed-accuracy tradeoff was accomplished through several distinct adjustments in the superior colliculus. Visually-responsive neurons modulated baseline firing rate and the time course of salience evidence. Unlike FEF, the magnitude of visual responses in SC did not vary across SAT conditions, but the time to locate the target was longer in Accurate as compared to Fast trials. Also unlike FEF, the activity of SC movement neurons when saccades were initiated was equivalent in Fast and Accurate trials. Search errors occurred when visual salience neurons in FEF and SC treated distractors as targets, even in the Accurate condition. Saccade-related neural activity in SC but less FEF varied with saccade peak velocity. These results extend our understanding of the cortical and subcortical contributions to SAT.Significance statementNeurophysiological mechanisms of speed-accuracy tradeoff (SAT) have only recently been investigated. This paper reports the first replication of SAT performance in nonhuman primates, the first report of variation of saccade dynamics with SAT, the first description of superior colliculus contributions to SAT, and the first description of the origin of errors during SAT. These results inform and constrain new models of distributed decision-making.


Sign in / Sign up

Export Citation Format

Share Document