Identification of Plant Genes by Entrapment and Activation Tagging

2021 ◽  
pp. 75-90
Author(s):  
Keith Lindsey ◽  
Jennifer F. Topping ◽  
Wenbin Wei
2010 ◽  
Vol 32 (1) ◽  
pp. 53-59
Author(s):  
Yan-Long GUAN ◽  
Wan-Sha LI ◽  
Kui-De YIN ◽  
Yong-Ping YANG ◽  
Xiang-Yang HU

Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1081-1088 ◽  
Author(s):  
Quang Hien Le ◽  
Kime Turcotte ◽  
Thomas Bureau

Abstract Members of the Tourist family of miniature inverted-repeat transposable elements (MITEs) are very abundant among a wide variety of plants, are frequently found associated with normal plant genes, and thus are thought to be important players in the organization and evolution of plant genomes. In Arabidopsis, the recent discovery of a Tourist member harboring a putative transposase has shed new light on the mobility and evolution of MITEs. Here, we analyze a family of Tourist transposons endogenous to the genome of the nematode Caenorhabditis elegans (Bristol N2). One member of this large family is 7568 bp in length, harbors an ORF similar to the putative Tourist transposase from Arabidopsis, and is related to the IS5 family of bacterial insertion sequences (IS). Using database searches, we found expressed sequence tags (ESTs) similar to the putative Tourist transposases in plants, insects, and vertebrates. Taken together, our data suggest that Tourist-like and IS5-like transposons form a superfamily of potentially active elements ubiquitous to prokaryotic and eukaryotic genomes.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kunxin Wu ◽  
Yadan Wu ◽  
Chunwei Zhang ◽  
Yan Fu ◽  
Zhixin Liu ◽  
...  

Abstract Background Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. Results In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to validate the involvement of DICER-LIKE 4 (DCL4) in antiviral defense against TCV. We further revealed the involvement of ARGONAUTE 2 (AGO2) in PDS silencing and antiviral defense against TCV in dcl2drb4 double mutant plants. These results demonstrated that DOUBLE-STRANDED RNA-BINDING PROTEIN 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B derivative in dcl2drb4 double mutant plants. Conclusions The CPB1B-based vector developed in this work is a valuable tool with visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.


1995 ◽  
Vol 13 (3) ◽  
pp. 219-226
Author(s):  
Ellen M. Reardon ◽  
Carl A. Price
Keyword(s):  

2009 ◽  
Vol 45 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Mónica Sebastiana ◽  
Andreia Figueiredo ◽  
Bartolomeu Acioli ◽  
Lisete Sousa ◽  
Fernando Pessoa ◽  
...  

1980 ◽  
Vol 5 (10) ◽  
pp. I-II
Author(s):  
R FRASER
Keyword(s):  

2013 ◽  
Vol 103 (6) ◽  
pp. 583-593 ◽  
Author(s):  
M. A. Islam ◽  
Rona N. Sturrock ◽  
Abul K. M. Ekramoddoullah

Douglas-fir (DF) (Pseudotsuga menziesii) is one of the largest and most economically important coniferous species in western North America. Its productivity is greatly affected by the root rot fungus Phellinus sulphurascens Pilát. Evidence of resistance by DF to fungal root pathogens such as P. sulphurascens has been reported but mechanisms of resistance in this compatible pathosystem are not yet known. To better understand the DF–P. sulphurascens interaction, especially at the molecular level, we selected 12 diverse plant genes already identified as defense-related from a cDNA library constructed using root tissues from P. sulphurascens-infected DF seedlings. Using quantitative reverse-transcriptase polymerase chain reaction on infected DF root samples collected at five different time points after inoculation, we found that P. sulphurascens infection significantly elevated expression of the 12 selected genes. In most cases the highest expression level was recorded within 2 to 3 days after inoculation. The constructed cDNA library, which is enriched with defense-related host genes and a number of fungal genes, will continue to serve as a useful resource for future larger-scale gene discovery and functional research on the P. sulphurascens and DF pathosystem.


Sign in / Sign up

Export Citation Format

Share Document