activation tagging
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 9)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
pp. 75-90
Author(s):  
Keith Lindsey ◽  
Jennifer F. Topping ◽  
Wenbin Wei

2021 ◽  
Vol 12 ◽  
Author(s):  
Mouboni Dutta ◽  
Anusree Saha ◽  
Mazahar Moin ◽  
Pulugurtha Bharadwaja Kirti

Our group has previously identified the activation of a GRAS transcription factor (TF) gene in the gain-of-function mutant population developed through activation tagging in rice (in an indica rice variety, BPT 5204) that was screened for water use efficiency. This family of GRAS transcription factors has been well known for their diverse roles in gibberellin signaling, light responses, root development, gametogenesis etc. Recent studies indicated their role in biotic and abiotic responses as well. Although this family of TFs received significant attention, not many genes were identified specifically for their roles in mediating stress tolerance in rice. Only OsGRAS23 (here named as OsGRAS22) was reported to code for a TF that induced drought tolerance in rice. In the present study, we have analyzed the expression patterns of rice GRAS TF genes under abiotic (NaCl and ABA treatments) and biotic (leaf samples infected with pathogens, Xanthomonas oryzae pv. oryzae that causes bacterial leaf blight and Rhizoctonia solani that causes sheath blight) stress conditions. In addition, their expression patterns were also analyzed in 13 different developmental stages. We studied their spatio-temporal regulation and correlated them with the in-silico studies. Fully annotated genomic sequences available in rice database have enabled us to study the protein properties, ligand interactions, domain analysis and presence of cis-regulatory elements through the bioinformatic approach. Most of the genes were induced immediately after the onset of stress particularly in the roots of ABA treated plants. OsGRAS39 was found to be a highly expressive gene under sheath blight infection and both abiotic stress treatments while OsGRAS8, OsSHR1 and OsSLR1 were also responsive. Our earlier activation tagging based functional characterization followed by the genome-wide characterization of the GRAS gene family members in the present study clearly show that they are highly appropriate candidate genes for manipulating stress tolerance in rice and other crop plants.


2020 ◽  
Vol 104 (6) ◽  
pp. 1535-1550 ◽  
Author(s):  
Mingde Deng ◽  
Yang Wang ◽  
Monika Kuzma ◽  
Maryse Chalifoux ◽  
Linda Tremblay ◽  
...  

2020 ◽  
Vol 33 (8) ◽  
pp. 1072-1079
Author(s):  
Dae-Han Chae ◽  
Da-Ran Kim ◽  
Gyeongjun Cho ◽  
Suhyeon Moon ◽  
Youn-Sig Kwak

The compound 2,4-diacetylphloroglucinol (DAPG) is a well-known secondary metabolite produced by Pseudomonas spp. that are used as biocontrol agents. DAPG displays a remarkably broad spectrum of toxic activity against pathogens of plants. Yet high concentrations of DAPG may also have negative effect on plants, but the phytotoxicity of DAPG is not clearly understood. Here, we used genome-wide activation, tagging Arabidopsis plants as the model plant to investigate the plant response to DAPG. A total of 15 lines were selected as DAPG-tolerant plants from among 62,000 lines investigated. The DAPG-responsible genes were then identified via thermal asymmetric interlaced PCR and quantitative reverse transcription PCR, and the gene ontology analysis showed the distribution of these genes having different biological processes, cellular regulations, and molecular functional properties. Collectively, these findings suggest that plants may rely on several pathways to prevent DAPG phytotoxicity.


2020 ◽  
Vol 71 (18) ◽  
pp. 5348-5364
Author(s):  
Jinmi Yoon ◽  
Lae-Hyeon Cho ◽  
Wenzhu Yang ◽  
Richa Pasriga ◽  
Yunfei Wu ◽  
...  

Abstract Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.


Biologia ◽  
2019 ◽  
Vol 74 (9) ◽  
pp. 1197-1217
Author(s):  
Bhupal Hatzade ◽  
Rohini Sreevathsa ◽  
Udayakumar Makarla ◽  
Uma Rao

Plant Direct ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. e00118
Author(s):  
John P. Davies ◽  
Vaka S. Reddy ◽  
Xing L. Liu ◽  
Avutu S. Reddy ◽  
William Michael Ainley ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3777 ◽  
Author(s):  
Linh Nguyen ◽  
Hye-Yeon Seok ◽  
Dong-Hyuk Woo ◽  
Sun-Young Lee ◽  
Yong-Hwan Moon

Plants adapt to abiotic stresses by complex mechanisms involving various stress-responsive genes. Here, we identified a DEAD-box RNA helicase (RH) gene, AtRH17, in Arabidopsis, involved in salt-stress responses using activation tagging, a useful technique for isolating novel stress-responsive genes. AT895, an activation tagging line, was more tolerant than wild type (WT) under NaCl treatment during germination and seedling development, and AtRH17 was activated in AT895. AtRH17 possesses nine well-conserved motifs of DEAD-box RHs, consisting of motifs Q, I, Ia, Ib, and II-VI. Although at least 12 orthologs of AtRH17 have been found in various plant species, no paralog occurs in Arabidopsis. AtRH17 protein is subcellularily localized in the nucleus. AtRH17-overexpressing transgenic plants (OXs) were more tolerant to high concentrations of NaCl and LiCl compared with WT, but no differences from WT were detected among seedlings exposed to mannitol and freezing treatments. Moreover, in the mature plant stage, AtRH17 OXs were also more tolerant to NaCl than WT, but not to drought, suggesting that AtRH17 is involved specifically in the salt-stress response. Notably, transcriptions of well-known abscisic acid (ABA)-dependent and ABA-independent stress-response genes were similar or lower in AtRH17 OXs than WT under salt-stress treatments. Taken together, our findings suggest that AtRH17, a nuclear DEAD-box RH protein, is involved in salt-stress tolerance, and that its overexpression confers salt-stress tolerance via a pathway other than the well-known ABA-dependent and ABA-independent pathways.


Sign in / Sign up

Export Citation Format

Share Document