adenine base
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 109)

H-INDEX

26
(FIVE YEARS 14)

Author(s):  
Xiang-xing Zhu ◽  
Jia-sheng Pan ◽  
Tao Lin ◽  
Ye-cheng Yang ◽  
Qiu-yan Huang ◽  
...  

Author(s):  
Jiantao Tan ◽  
Dongchang Zeng ◽  
Yanchang Zhao ◽  
Yaxi Wang ◽  
Taoli Liu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Han Zhang ◽  
Nathan Bamidele ◽  
Pengpeng Liu ◽  
Ogooluwa Ojelabi ◽  
Xin D. Gao ◽  
...  

Base editors (BEs) have opened new avenues for the treatment of genetic diseases. However, advances in delivery approaches are needed to enable disease targeting of a broad range of tissues and cell types. Adeno-associated virus (AAV) vectors remain one of the most promising delivery vehicles for gene therapies. Currently, most BE/guide combinations and their promoters exceed the packaging limit (~5 kb) of AAVs. Dual-AAV delivery strategies often require high viral doses that impose safety concerns. In this study, we engineered an adenine base editor using a compact Cas9 from Neisseria meningitidis (Nme2Cas9). Compared to the well-characterized Streptococcus pyogenes Cas9-containing ABEs, Nme2-ABE possesses a distinct PAM (N4CC) and editing window, exhibits fewer off-target effects, and can efficiently install therapeutically relevant mutations in both human and mouse genomes. Importantly, we showed that in vivo delivery of Nme2-ABE and its guide RNA by a single-AAV vector can revert the disease mutation and phenotype in an adult mouse model of tyrosinemia. We anticipate that Nme2-ABE, by virtue of its compact size and broad targeting range, will enable a range of therapeutic applications with improved safety and efficacy due in part to packaging in a single-vector system.


Author(s):  
Yimeng Wang ◽  
Lifang Li ◽  
Jiaqi Li ◽  
Bin Zhao ◽  
Gan Huang ◽  
...  

Over the past several decades, RNA modifications have rapidly emerged as an indispensable topic in epitranscriptomics. N6-methyladenosine (m6A), namely, methylation at the sixth position of an adenine base in an RNA molecule, is the most prevalent RNA modification in both coding and noncoding RNAs. m6A has emerged as a crucial posttranscriptional regulator involved in both physiological and pathological processes. Based on accumulating evidence, m6A participates in the pathogenesis of immune-related diseases by regulating both innate and adaptive immune cells through various mechanisms. Autoimmune diseases are caused by a self-destructive immune response in the setting of genetic and environmental factors, and recent studies have discovered that m6A may play an essential role in the development of autoimmune diseases. In this review, we focus on the important role of m6A modification in biological functions and highlight its contributions to immune cells and the development of autoimmune diseases, thereby providing promising epitranscriptomic targets for preventing and treating autoimmune disorders.


2021 ◽  
Author(s):  
Xiang-xing Zhu ◽  
Jia-sheng Pan ◽  
Tao Lin ◽  
Ye-cheng Yang ◽  
Qiu-yan Huang ◽  
...  

Abstract Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif (PAM) sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified “all-in-one” ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The “all-in-one” ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3’ end of the intron 5) and splice donor site (GT sequence at the 5’ end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.


2021 ◽  
Author(s):  
Shaofang Li ◽  
Lang Liu ◽  
Wenxian Sun ◽  
Xueping Zhou ◽  
Huanbin Zhou

The high-activity adenine base editors (ABEs), engineered with the recently-developed tRNA adenosine deaminases (TadA8e and TadA9), show robust base editing activity but raise concerns about off-target effects. In this study, we performed a comprehensive evaluation of ABE8e- and ABE9-induced DNA and RNA mutations in Oryza sativa. Whole-genome sequencing analysis of plants transformed with four ABEs, including SpCas9n-TadA8e, SpCas9n-TadA9, SpCas9n-NG-TadA8e, and SpCas9n-NG-TadA9, revealed that ABEs harboring TadA9 lead to a higher number of off-target A-to-G (A>G) single-nucleotide variants (SNVs), and that those harboring the CRISPR/SpCas9n-NG lead to a higher total number of off-target SNVs in the rice genome. An analysis of the T-DNAs carrying the ABEs indicated that the on-target mutations could be introduced before and/or after T-DNA integration into plant genomes, with more off-target A>G SNVs forming after the ABEs had integrated into the plant genome. Furthermore, we detected off-target A>G RNA mutations in plants with high expression of ABEs but not in plants with low expression of ABEs. The off-target A>G RNA mutations tended to cluster, while off-target A>G DNA mutations rarely clustered.Our findings that Cas proteins, TadA variants, temporal expression of ABEs, and expression levels of ABEs contribute to ABE specificity in rice provide insight into the specificity of ABEs and suggest alternative ways to increase ABE specificity besides engineering TadA variants.


2021 ◽  
Vol 20 ◽  
pp. S294
Author(s):  
S. Traore ◽  
S. Krishnamurthy ◽  
C. Wohlford-Lenane ◽  
K. Kulhankova ◽  
B. Thommandru ◽  
...  

2021 ◽  
Author(s):  
Jing Su ◽  
Xiu Jing ◽  
Kai qin She ◽  
Xiao mei Zhong ◽  
Qin yu Zhao ◽  
...  

Mucopolysaccharidosis type I (MPS I) is a severe disease caused by loss-of-function mutations variants in the α-L-iduronidase (IDUA) gene. In vivo genome editing represents a promising strategy to correct IDUA mutations, and has the potential to permanently restore IDUA function over the lifespan of the patients. Here, we used adenine base editing to directly convert A>G (TAG>TGG) in newborn murine model harboring Idua-W392X mutation, which recapitulates the human condition and is analogous to the highly prevalent human W402X mutation. We engineered a split-intein dual-adeno-associated virus (AAV) 9 in vivo adenine base editor to circumvent the package size limit of AAV vectors. Intravenous injection of AAV9-base editor system into MPS I newborn mice led to sustained enzyme expression sufficient for correction of metabolic disease (GAGs substrate accumulation) and prevention of neurobehavioral deficits. We observed a reversion of the W392X mutation in 22.46 plus-or-minus sign 6.74% of hepatocytes, 11.18 plus-or-minus sign 5.25% of heart and 0.34 plus-or-minus sign 0.12% of brain, along with decreased GAGs storage in peripheral organs (liver, spleen, lung and kidney). Collectively, these data showed the promise of a base editing approach to precisely correct a common genetic cause of MPS I in vivo and could be broadly applicable to the treatment of a wide array of monogenic diseases.


Sign in / Sign up

Export Citation Format

Share Document