Predicting low probability rapid landslides at Roxburgh Gorge, New Zealand

2018 ◽  
pp. 277-284
Author(s):  
Alan Moon
Keyword(s):  
2006 ◽  
Vol 273 (1604) ◽  
pp. 2969-2975 ◽  
Author(s):  
Richard P Duncan ◽  
David M Forsyth

Islands are likely to differ in their susceptibility to colonization or invasion due to variation in factors that affect population persistence, including island area, climatic severity and habitat modification. We tested the importance of these factors in explaining the persistence of 164 introductions of six mammal species to 85 islands in the New Zealand archipelago using survival analysis and model selection techniques. As predicted by the theory of stochastic population growth, extinction risk was the greatest in the period immediately following introduction, declining rapidly to low probability by ca 25 years. This suggests that initially small populations were at greatest risk of extinction and that populations which survived for 25 years were likely to persist subsequently for much longer. Islands in the New Zealand archipelago become colder and windier with increasing latitude, and the probability of mammal populations persisting on islands declined steeply with increasing latitude. Hence, our results suggest that climatic suitability was an important determinant of the outcome of these invasions. The form of the relationship between latitude and persistence probability differed among species, emphasizing that the outcome of colonization attempts is species-environment specific.


1999 ◽  
Vol 190 ◽  
pp. 563-566
Author(s):  
J. D. Pritchard ◽  
W. Tobin ◽  
J. V. Clausen ◽  
E. F. Guinan ◽  
E. L. Fitzpatrick ◽  
...  

Our collaboration involves groups in Denmark, the U.S.A. Spain and of course New Zealand. Combining ground-based and satellite (IUEandHST) observations we aim to determine accurate and precise stellar fundamental parameters for the components of Magellanic Cloud Eclipsing Binaries as well as the distances to these systems and hence the parent galaxies themselves. This poster presents our latest progress.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
Sidney D. Kobernick ◽  
Edna A. Elfont ◽  
Neddra L. Brooks

This cytochemical study was designed to investigate early metabolic changes in the aortic wall that might lead to or accompany development of atherosclerotic plaques in rabbits. The hypothesis that the primary cellular alteration leading to plaque formation might be due to changes in either carbohydrate or lipid metabolism led to histochemical studies that showed elevation of G-6-Pase in atherosclerotic plaques of rabbit aorta. This observation initiated the present investigation to determine how early in plaque formation and in which cells this change could be observed.Male New Zealand white rabbits of approximately 2000 kg consumed normal diets or diets containing 0.25 or 1.0 gm of cholesterol per day for 10, 50 and 90 days. Aortas were injected jin situ with glutaraldehyde fixative and dissected out. The plaques were identified, isolated, minced and fixed for not more than 10 minutes. Incubation and postfixation proceeded as described by Leskes and co-workers.


1998 ◽  
Vol 36 (5) ◽  
pp. 255-262
Author(s):  
SIMPANYA ◽  
JARVIS ◽  
BAXTER

Sign in / Sign up

Export Citation Format

Share Document