Weed Management Systems for Turfgrass

2017 ◽  
pp. 603-665
Author(s):  
S. Wayne Bingham ◽  
William J. Chism ◽  
Prasanta C. Bhowmik
1999 ◽  
Vol 91 (4) ◽  
pp. 585-591 ◽  
Author(s):  
William J. Cox ◽  
J. S. Singer ◽  
E. J. Shields ◽  
J. Keith Waldron ◽  
Gary C. Bergstrom

Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


2017 ◽  
pp. 343-400 ◽  
Author(s):  
John W. Wilcut ◽  
Alan C. York ◽  
David L. Jordan

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


1990 ◽  
Vol 4 (2) ◽  
pp. 239-244 ◽  
Author(s):  
John W. Wilcut ◽  
Glenn R. Wehtje ◽  
T. Vint Hicks ◽  
Tracy A. Cole

Field studies were conducted from 1985 to 1987 to evaluate postemergence herbicide systems with preemergence systems to control Texas panicum, Florida beggarweed, sicklepod, and pitted morningglory in peanuts. Adding paraquat at 0.14 kg ai/ha to postemergence herbicide systems reduced fresh weight of Florida beggarweed 92% (18% increase over the same systems without paraquat), sicklepod 95% (21% increase), and pitted morningglory 95% (11% increase). Herbicide systems containing paraquat improved peanut yields by 230 kg/ha and net returns by $52/ha over herbicide systems not containing paraquat. Fluazifop-P and sethoxydim systems reduced Texas panicum fresh weight (at least 96%) more than a preemergence system (92% reduction) that used benefin applied preplant incorporated and alachlor plus naptalam and dinoseb applied at cracking (GC) or a postemergence system that used alachlor and naptalam plus dinoseb GC and paraquat applied early postemergence (86% reduction). Systems containing fluazifop-P provided greater yields (4190 kg/ha) and net returns ($383/ha) than systems containing sethoxydim (4010 kg/ha, $305/ha) when averaged across all rates of application.


Sign in / Sign up

Export Citation Format

Share Document