scholarly journals Evaluation of alkali-silica reactivity using aggregate mineralogy and expansion tests

Author(s):  
M Islam ◽  
N Ghafoori
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.


2021 ◽  
Vol 295 ◽  
pp. 123690
Author(s):  
Aneta Antolik ◽  
Daria Jóźwiak-Niedźwiedzka

2007 ◽  
Vol 63 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Yuichiro KAWABATA ◽  
Kazuo YAMADA ◽  
Hiromichi MATSUSHITA

2021 ◽  
Author(s):  
Robert C Johnson

This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates. The study evaluated the variability of the Accelerated Mortar Bar Test due to test variables as well as the single and multi-laboratory variation. The variability of the Concrete Microbar Test due to test variables and the correlation to results from Accelerated Mortar Bar and Concrete Prism Test results were also evaluated. The tests were corroborated by comparing the porosity, permeability and alkali binding capacity of samples tested by the accelerated tests. It was found that the Accelerated Mortar Bar Test provides acceptable results when the test variables, such as crushing methods and absorption values, are carried out and evaluated properly. The Concrete Microbar Test was found to underestimate the expansion of reactive aggregates. However, the same test was found to provide good correlation to the expansion results of Concrete Prisms incorporating Supplementary Cementing Materials when the test duration was increased.


1970 ◽  
Vol 14 ◽  
pp. 15-20
Author(s):  
Naresh Kazi Tamrakar ◽  
Lalu Prasad Paudel

Quality of aggregate is of extreme concern when it is to be used for infrastructures. Besides, many physical and mechanicalproperties of the aggregate, presence or absence of deleterious constituents and alkali-silica reactivity are especially importantwhen aggregates are to be used in concrete structures. High potential of alkali-silica reactivity or alkali-carbonate reactivity andpresence of deleterious constituents may impair the infrastructures.A ledge rock sample from the heap to be taken for crushing was petrographically analysed for alkali-silica reactivity. Inoverall, two rock clans (dolosparstone and dolomicrosparstone) with three sub clans (rock type X, Y and Z) from the sample 2 areidentified. Rock type X (dolosparstone) constitutes 82.94% of the whole sample, and shows notable amount of quartz and calciteveins, and carbonaceous material and hematite on the mosaic of dolospars. Rock types Y (dolosparstone) and Z (dolomicrosparstone)contain trace amount of microquartz, mega quartz (>15 mm) and carbonaceous opaques. The rock type Z is dominantly composedof dolomicrospars. Major portions of all the rock types are characterised by mosaics of dolomite in association with variableamounts of muscovite, quartz, and calcite. Calcite often replaces the mosaics of dolomite and bands of quartz, forming a veinnetworks in rock types X and Y. Silica is represented by a low-temperature mega quartz either in ground or in veins, a trace amountof microquartz in rock types Y and Z. There is no other reactive silica components, thus showing a low potential to alkali-silicareactivity. However, the sample shows potential of alkali-carbonate reactivity as significant proportion of rock type havingdolomicrospars are found.DOI: http://dx.doi.org/10.3126/bdg.v14i0.5433Bulletin of the Department of Geology Vol.14 2011, pp.15-20


2014 ◽  
Vol 60 (4) ◽  
pp. 441-452
Author(s):  
Z. Owsiak ◽  
P. Czapik ◽  
J. Zapała-Sławeta

AbstractAlkali-aggregate reactivity (AAR) is one of the major causes of damage in concrete. Potential susceptibility of aggregates to this reaction can be determined using several methods. This study compares gravel alkali reactivity results obtained from different tests conducted on coarse aggregates with complex petrography. The potential for the reactivity in the aggregates was revealed in the chemical test using treatment with sodium hydroxide. Optical microscopy, scanning electron microscopy and X-ray diffraction were used to identify the reactive constituents. The expansion measured in the mortar bars test confirmed that the aggregate was potentially capable of alkali silica reactivity with consequent deleterious effect on concrete.


Sign in / Sign up

Export Citation Format

Share Document