scholarly journals A Computational Study of the Shear Behavior of Reinforced Concrete Beams Affected from Alkali–Silica Reactivity Damage

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.

2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


Author(s):  
Nguyen Ngoc Tan ◽  
Nguyen Trung Kien

The reinforcement corrosion is one of the most dominant deterioration mechanisms of existing reinforced concrete structures. In this paper, the effects of the stirrup corrosion on the structural performance of five corroded beams have been simulated using the finite element model with DIANA software. These tested beams are divided into two groups for considering different inputs: (i) without corroded stirrups in flexural span, (ii) with locally corroded stirrups at different locations (e.g. full span, shear span, middle span). FE model has been calibrated with experimental results that were obtained from the four-point bending test carried out on the tested beams. This study shows that the stirrups corrosion should be received more attention in the serviceability limit state since its considerable effect on flexural behavior. Based on a parametric study, it shows that the effect of the cross-section loss of tension reinforcements on the load-carrying capacity of the corroded beam is more significant than the bond strength reduction. Keywords: reinforced concrete; beam; stirrup corrosion; finite element model; flexural nonlinear behavior.


2011 ◽  
Vol 147 ◽  
pp. 19-23
Author(s):  
Ashraf Mohamed Mahmoud

A finite element reinforced concrete model has been analyzed by the author with ANSYS 9 finite element program for both unstrengthened and CFRP-strengthened beams using concrete element model 25x25x25mm and discrete and smeared steel distribution with openings exist. The CFRP has been modeled using Solid46 element, which has orthotropic properties. The deflection results have been compared with an experimental and other finite element model which are performed by Mohamed [4], in which using 100x42.5x42.5 mm concrete element, smeared steel distribution with the same opening sizes, and modeling CFRP with ANSYS 5 finite element program using Link10 element which has a uniaxial properties. These results show that the author's model is much better than the Mohamed's [4] model comparing with the experimental one. A parametric study has been done on the proposed model for obtaining the maximum strains values for concrete and steel at failure loads, for different opening sizes and comparing them with the experimental one. This study show a good agreement between the proposed and experimental model results for strains values which indicate the efficiency of the proposed model for analyzing the unstrengthend and strengthened reinforced concrete beams.


2012 ◽  
Vol 58 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Z. Ismail

Abstract A method of detecting honeycombing damage in a reinforced concrete beam using the finite element model updating technique was proposed. A control beam and two finite element models representing different severity of damage were constructed using available software and the defect parameters were updated. Analyses were performed on the finite element models to approximate the modal parameters. A datum and a control finite element model to match the datum test beams with honeycombs were prepared. Results from the finite element model were corrected by updating the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There was no significant loss of stiffness by doubling the volume of the honeycombs.


2015 ◽  
Vol 730 ◽  
pp. 101-104
Author(s):  
Nan Huang ◽  
Hui Li ◽  
Ping Fei Xu

The flexural behavior of reinforced concrete beams strengthened by CFRP is analyzed by using the way which connected tests with finite element simulation.First,through the test to get the load data of one unstrengthened and one strengthened reinforced concrete beam.Then,the finite element model is carried out based on Ansys finite element analysis software.The reinforced beam carrying capacity is improved based on the test data and finite element calculation results.Steel bars stress change curve, CFRP stress curve and the load displacement curves are in good agreement with experimental results.


2012 ◽  
Vol 446-449 ◽  
pp. 566-571
Author(s):  
Jia Quan Wu ◽  
Ji Yao ◽  
Hong Yan Li ◽  
Liang Cao ◽  
Kun Ma

This paper describes the strain mode damage detection theory and a three-dimensional reinforced concrete beams finite element model was built by finite element software. The different degree injury models tests were compared. Experiment’s results show that the first four natural frequencies of different degree injury models are small differences while the corresponding strain modes have a significant changed in damage location. The structure of the strain mode changes are still evident when structural damage occurred in the strain mode node.


Sign in / Sign up

Export Citation Format

Share Document