Influence of ground motion characteristics on the seismic response of single and multi degree of freedom steel framed systems

Author(s):  
Jun Gong ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Shizhao Shen ◽  
Da Qaio ◽  
...  

To investigate the variability of ground motion characteristics (GMC) with the angle of seismic incidence (ASI) and the impact of seismic incident directionality on structural responses, first, a large-scale database of recorded ground motions was used to analyze the causes of GMC variability due to the seismic incident directionality effect (SIDE). Then a single-mass bi-degree-of-freedom system (SM-BDOF-S) with different types of symmetrical sections was selected to explore the influence mechanism of SIDE on the seismic responses. The results illustrated that the GMC has substantial variability with the ASI, which is independent of the earthquake source, propagation distance, and site condition, and exhibits complex random characteristics. Additionally, a classification method for ground motions is proposed based on this GMC variability to establish a criterion for selecting ground motions in seismic analysis considering the SIDE. Moreover, for an SM-BDOF-S, the response spectral plane is proposed to explain the transition behavior of spectral responses that are very similar among different stiffness ratios, but divergent for different types of ground motions. The influence of SIDE on structures is determined by their stiffness and stiffness ratio in the [Formula: see text]- and [Formula: see text]-directions, as well as the type of ground motion.


2008 ◽  
Author(s):  
B. Ozden Caglayan ◽  
Kadir Ozakgul ◽  
Ovunc Tezer ◽  
Adolfo Santini ◽  
Nicola Moraci

2013 ◽  
Vol 275-277 ◽  
pp. 1407-1410
Author(s):  
Hai Ming Liu ◽  
Xia Xin Tao ◽  
Liang Wang ◽  
Shou Long Tian

Result of seismic response analysis of a large span cable based bridge with inconsistent inputs is presented in a conjugated paper and is further deal with in this paper. The results from synthesized motions for the same earthquake source and same distance to the rupture show a large difference. They are compared with characteristics of the inputs in this paper. The effect of the motion amplitudes and the coherency between the input motions at the two ends of the main girder on the maximum response displacements and internal forces are pointed out.


2020 ◽  
Vol 18 (14) ◽  
pp. 6375-6403
Author(s):  
Chao Zhang ◽  
Jian-bing Lu ◽  
Hong-yu Jia ◽  
Zhi-chao Lai ◽  
Xu Li ◽  
...  

2004 ◽  
Vol 20 (4) ◽  
pp. 1057-1080 ◽  
Author(s):  
T. C. Hutchinson ◽  
Y. H. Chai ◽  
R. W. Boulanger ◽  
I. M. Idriss

Nonlinear static and dynamic analyses were used to evaluate the inelastic seismic response of bridge and viaduct structures supported on extended cast-in-drilled-hole (CIDH) pile shafts. The nonlinear dynamic analyses used a beam-on-nonlinear-Winkler foundation (BNWF) framework to model the soil-pile interaction, nonlinear fiber beam-column elements to model the reinforced concrete sections, and one-dimensional site response analyses for the free-field soil profile response. The study included consideration of ground motion characteristics, site response, lateral soil resistance, structural parameters, geometric nonlinearity (P-Δ effects), and performance measures. Results described herein focus on how the ground motion characteristics and variations in structural configurations affect the performance measures important for evaluating the inelastic seismic response of these structures. Presented results focus on a representative dense soil profile and thus are not widely applicable to dramatically different soil sites.


Sign in / Sign up

Export Citation Format

Share Document