Towards Integrated Approaches to Reduce Flood Risk in Urban Areas

2007 ◽  
pp. 415-432 ◽  
Author(s):  
Jonathan Chapman ◽  
JingJing Zhou ◽  
John Blanksby ◽  
Richard Ashley
BUILDER ◽  
2021 ◽  
Vol 288 (7) ◽  
pp. 78-85
Author(s):  
Sebastian Dziedzic ◽  
Agata Twardoch

The article provides an overview of spatial and legal solutions related to the issue of water management in cities in the context of climate change. The aim of the research is to identify the main differences between the traditional and integrated approaches to water-related infrastructure based on case studies of European Cities at different scales. Gathering, ordering and comparing adequate solutions will allow to establish guidelines for the development of Polish cities and point out directions for architects and urban planners designing urban spaces. The comparison of good examples with theory would make it possible to verify whether practise corresponds with theory, and whether it can actually - through the synergy of measures – bring new quality to urban areas.


2017 ◽  
Vol 93 (S1) ◽  
pp. 39-60 ◽  
Author(s):  
Maria Cortès ◽  
Maria Carmen Llasat ◽  
Joan Gilabert ◽  
Montserrat Llasat-Botija ◽  
Marco Turco ◽  
...  
Keyword(s):  

Author(s):  
T Rashidul Kabir ◽  
B Gersonius ◽  
C Zevenbergen ◽  
P van Gelder ◽  
Mohammad Shah

Anthropocene ◽  
2019 ◽  
Vol 28 ◽  
pp. 100217 ◽  
Author(s):  
Sharon L. Harlan ◽  
Mariana J. Sarango ◽  
Elizabeth A. Mack ◽  
Timothy A. Stephens

Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
George Papaioannou ◽  
Athanasios Loukas ◽  
Lampros Vasiliades

In recent decades, natural hazards have caused major disasters in natural and man-made environments. Floods are one of the most devasting natural hazards, with high levels of mortality, destruction of infrastructure, and large financial losses. This study presents a methodological approach for flood risk management at lakes and adjacent areas that is based on the implementation of the EU Floods Directive (2007/60/EC) in Greece. Contemporary engineering approaches have been used for the estimation of the inflow hydrographs. The hydraulic–hydrodynamic simulations were implemented in the following order: (a) hydrologic modeling of lake tributaries and estimation flood flow inflow to the lake, (b) flood inundation modeling of lake tributaries, (c) simulation of the lake as a closed system, (d) simulation of the lake outflows to the adjacent areas, and (e) simulation of flood inundation of rural and urban areas adjacent to the lake. The hydrologic modeling was performed using the HEC-HMS model, and the hydraulic-hydrodynamic simulations were implemented with the use of the two-dimensional HEC-RAS model. The simulations were applied to three soil moisture conditions (dry, medium and wet) and three return periods (T = 50, T = 100 and T = 1000 years) and a methodology was followed for the flood inundation modeling in urban areas. Upper and lower estimates on water depths, flow velocities and inundation areas are estimated for all inflow hydrographs and for varying roughness coefficient values. The proposed methodology presents the necessary steps and the results for the assessment of flood risk management and mapping for lake and adjacent urban and rural areas. The methodology was applied to Lake Pamvotida in Epirus, Greece, Ioannina.


Sign in / Sign up

Export Citation Format

Share Document