Flood Induced Indirect Hazard Loss Estimation Models

2007 ◽  
pp. 195-212 ◽  
Author(s):  
William Veerbeek
2020 ◽  
Author(s):  
Lukas Schoppa ◽  
Tobias Sieg ◽  
Kristin Vogel ◽  
Gert Zöller ◽  
Heidi Kreibich

<p>Flood risk assessment strongly relies on accurate and reliable estimation of monetary flood loss. Conventionally, this involves univariable deterministic stage-damage functions. Recent advancements in the field promote the use of multivariable probabilistic loss estimation models which consider damage controlling variables beyond inundation depth. Although companies contribute significantly to total loss figures, multivariable probabilistic modeling approaches for companies are lacking. Scarce data and heterogeneity among companies impedes the development of novel company flood loss models.</p><p>We present three multivariable flood loss estimation models for companies that intrinsically quantify prediction uncertainty. Based on object-level loss data (n=1306), we comparatively evaluate the predictive performance of Bayesian networks, Bayesian regression and random forest in relation to established stage-damage functions. The company loss data stems from four post-event surveys after major floods in Germany between 2002 and 2013 and comprises information on flood intensity, company characteristics and private precaution. We examine the performance of the candidate models separately for losses to building, equipment, and goods and stock. Plausibility checks show that the multivariable models are able to identify and reproduce essential relationships of the flood damage processes from the data. The comparison of the prediction capacity reveals that the proposed models outperform stage-damage functions clearly while differences among the multivariable models are small. Even though the presented models improve the accuracy of loss predictions, wide predictive distributions underline the necessity for the quantification of predictive uncertainty. This applies particularly to companies, for which the heterogeneity and variation in the loss data are more pronounced than for private households. Due to their probabilistic nature, the presented multivariable models contribute towards a transparent treatment of uncertainties in flood risk assessment.</p>


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1574
Author(s):  
Michiel van Noord ◽  
Tomas Landelius ◽  
Sandra Andersson

Snow-induced photovoltaic (PV)-energy losses (snow losses) in snowy and cold locations vary up to 100% monthly and 34% annually, according to literature. Levels that illustrate the need for snow loss estimation using validated models. However, to our knowledge, all these models build on limited numbers of sites and winter seasons, and with limited climate diversity. To overcome this limitation in underlying statistics, we investigate the estimation of snow losses using a PV system’s yield data together with freely available gridded weather datasets. To develop and illustrate this approach, 263 sites in northern Sweden are studied over multiple winters. Firstly, snow-free production is approximated by identifying snow-free days and using corresponding data to infer tilt and azimuth angles and a snow-free performance model incorporating shading effects, etc. This performance model approximates snow-free monthly yields with an average hourly standard deviation of 6.9%, indicating decent agreement. Secondly, snow losses are calculated as the difference between measured and modeled yield, showing annual snow losses up to 20% and means of 1.5–6.2% for winters with data for at least 89 sites. Thirdly, two existing snow loss estimation models are compared to our calculated snow losses, with the best match showing a correlation of 0.73 and less than 1% bias for annual snow losses. Based on these results, we argue that our approach enables studying snow losses for high numbers of PV systems and winter seasons using existing datasets.


Sign in / Sign up

Export Citation Format

Share Document